如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,AD=2,AB=1,∠ABC=60°,PA⊥面ABCD,設(shè)E為PC中點,點F在線段PD上且PF=2FD.
(Ⅰ)求證:BE∥平面ACF;
(Ⅱ)設(shè)二面角A-CF-D的大小為θ,若|cosθ|=
42
14
,求PA的長.
考點:與二面角有關(guān)的立體幾何綜合題,直線與平面平行的判定
專題:空間向量及應(yīng)用
分析:(Ⅰ)由已知條件用余弦定理和勾股定理推導出AB⊥AC.又PA⊥面ABCD,以AB,AC,AP分別為x,y,z軸建立坐標系.利用向量法能求出BE∥平面ACF.
(Ⅱ)分別求出面PCD法向量和面ACF的法向量,由|cosθ|=
42
14
,利用向量法能求出PA的長.
解答: (Ⅰ)證明:∵由AD=2,AB=1,ABCD是平行四邊形,∠ABC=60°,
∴AC=
4+1-2×2×1×cos60°
=
3
,
∴AB⊥AC.
又∵PA⊥面ABCD,∴以AB,AC,AP分別為x,y,z軸建立坐標系.
則A(0,0,0),B(1,0,0),C(0,
3
,0),D(-1,
3
,0),
設(shè)P(0,0,c),則E(0,
3
2
,
c
2
)

設(shè)F(x,y,z),∵PF=2FD,
PF
=2
FD
,即:(x,y,z-c)=2(-1-x,
3
-y,-z)

解得:x=-
2
3
,y=
2
3
3
z=
c
3
,
F(-
2
3
2
3
3
,
c
3
)
.…..(5分)
AF
=(-
2
3
,
2
3
3
,
c
3
)
,
AC
=(0,
3
,0)
,
BE
=(-1,
3
2
,
c
2
)

設(shè)面ACF的法向量為
n
=(x,y,z)
,
-
2
3
x+
2
3
3
y+
c
3
z=0
y=0
,取
n
=(c, 0, 2)

因為
n
BE
=-c+c=0
,且BE?面ACF,
∴BE∥平面ACF.  …..(9分)
(Ⅱ)設(shè)面PCD法向量為
m
=(x,y,z)
,
PC
=(0,
3
, -c)
,
PD
=(-1,
3
, -c)
,
3
y-cz=0
-x+
3
y-cz=0
,取
m
=(0, c,
3
)
.  …..(11分)
|cosθ|=|
n
m
|
n
||
m
|
|=
42
14
,得
2
3
c2+4
c2+3
=
42
14

整理,得c4+7c2-44=0,解得c=2,
∴PA=2. …..(15分)
點評:本題考查直線與平面平行的證明,考查線段長的求法,解題時要認真審題,注意向量法的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=
2
,[an]表示an的整數(shù)部分,(an)表示an的小數(shù)部分,an+1=[an]+
1
(an)
(n∈N*),則an=
 
;數(shù)列{bn}中,b1=3,b2=2,
b
2
n+1
=bnbn+2
(n∈N*),則
n
i=1
aibi
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中,真命題是(  )
A、命題“若p,則q”的否命題是“若p,則¬q”
B、a+b=0的充要條件是
a
b
=-1
C、已知命題p、q,若“p∨q”為假命題,則命題p與q一真一假
D、命題p:?x∈R,使得x2+1<0,則¬p:?x∈R,使得x2+1≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復(fù)數(shù)m(m-1)+(m2-3m+2)i是純虛數(shù)(其中i為虛數(shù)單位),則m=( 。
A、0或1B、1C、0D、1或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+a(x+lnx),x>0,a∈R是常數(shù).試證明:
(1)?a∈R,y=(a+1)(2x-1)是函數(shù)y=f(x)的圖象的一條切線;
(2)?a∈R,存在ξ∈(1,e),使f′(ξ)=
f(e)-f(1)
e-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f﹙x﹚=loga(1+x),g﹙x﹚=loga﹙x-1﹚﹙a>0且a≠1﹚.
①求函數(shù)f﹙x﹚+g﹙x﹚的定義域;
②判斷函數(shù)f﹙x﹚+g﹙x﹚的奇偶性并說明理由;
③求使f﹙x﹚-g(2x)>0成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:當x∈R時,任意f(x)都可以寫成一個奇函數(shù)與一個偶函數(shù)的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓C1以雙曲線C2
x2
4
-
y2
16
=1的實軸為短軸、虛軸為長軸,且與拋物線C3:y2=12x交于A,B兩點.
(Ⅰ)求橢圓C1的方程及線段AB的長;
(Ⅱ)在C1與C3圖象的公共區(qū)域內(nèi),是否存在一點P(x0,y0),使得C1的弦EF與C3的弦MN相互垂直平分于點P?若存在,求點P坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠ABC=
π
3
,AB=2,BC=3,則sin∠BAC=
 

查看答案和解析>>

同步練習冊答案