【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,圓的參數(shù)方程為(為參數(shù), 是大于0的常數(shù)).以坐標原點為極點, 軸正半軸為極軸建立極坐標系,圓的極坐標方程為.
(1)求圓的極坐標方程和圓的直角坐標方程;
(2)分別記直線: , 與圓、圓的異于原點的焦點為, ,若圓與圓外切,試求實數(shù)的值及線段的長.
【答案】(1) , (2) ,
【解析】試題分析:(1)先將圓的參數(shù)方程化為直角坐標方程,再利用可得圓的極坐標方程,兩邊同乘以利用互化公式 即可得圓的直角坐標方程;(2)由(1)知圓的圓心,半徑;圓的圓心,半徑, 圓與圓外切的性質(zhì)列方程解得,分別將代入、的極坐標方程,利用極徑的幾何意義可得線段的長.
試題解析:(1)圓: (是參數(shù))消去參數(shù),
得其普通方程為,
將, 代入上式并化簡,
得圓的極坐標方程,
由圓的極坐標方程,得.
將, , 代入上式,
得圓的直角坐標方程為.
(2)由(1)知圓的圓心,半徑;圓的圓心,半徑,
,
∵圓與圓外切,
∴,解得,
即圓的極坐標方程為.
將代入,得,得;
將代入,得,得;
故.
科目:高中數(shù)學 來源: 題型:
【題目】共享單車是指企業(yè)的校園,地鐵站點、公交站點、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是一種分時租賃模式,某共享單車企業(yè)為更好服務(wù)社會,隨機調(diào)查了100人,統(tǒng)計了這100人每日平均騎行共享單車的時間(單位:分鐘),由統(tǒng)計數(shù)據(jù)得到如下頻率分布直方圖,已知騎行時間在三組對應(yīng)的人數(shù)依次成等差數(shù)列
(1)求頻率分布直方圖中的值.
(2)若將日平均騎行時間不少于80分鐘的用戶定義為“忠實用戶”,將日平均騎行時間少于40分鐘的用戶為“潛力用戶”,現(xiàn)從上述“忠實用戶”與“潛力用戶”的人中按分層抽樣選出5人,再從這5人中任取3人,求恰好1人為“忠實用戶”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E,F(xiàn),且EF=,則下列結(jié)論中錯誤的是( )
A. AC⊥BE
B. EF∥平面ABCD
C. 三棱錐A-BEF的體積為定值
D. △AEF的面積與△BEF的面積相等
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2x-的定義域為(0,1](a為實數(shù)).
(1)當a=1時,求函數(shù)y=f(x)的值域;
(2)求函數(shù)y=f(x)在區(qū)間(0,1]上的最大值及最小值,并求出當函數(shù)f(x)取得最值時x的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別是,點在橢圓上, 是等邊三角形.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)點在橢圓上,線段與線段交于點,若與的面積之比為,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,直線的斜率之積為 .
(Ⅰ)求頂點的軌跡方程;
(Ⅱ)設(shè)動直線 ,點關(guān)于直線的對稱點為,且點在曲線上,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com