【題目】已知橢圓的左、右焦點(diǎn)分別是
,點(diǎn)
在橢圓
上,
是等邊三角形.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)點(diǎn)在橢圓
上,線段
與線段
交于點(diǎn)
,若
與
的面積之比為
,求點(diǎn)
的坐標(biāo).
【答案】(Ⅰ)(Ⅱ)
【解析】試題分析:(Ⅰ)由橢圓短軸上的頂點(diǎn)得
,由
是正三角形得
即
,從而求得方程;
(Ⅱ)設(shè),
,因?yàn)?/span>
,所以
,且
,從而得即
,代入橢圓方程得
,將
代入直線
的方程得到
,即可得解.
試題解析:
解:(Ⅰ)由題意是橢圓
短軸上的頂點(diǎn),所以
,
因?yàn)?/span>是正三角形,
所以,即
.
由,所以
.
所以橢圓的標(biāo)準(zhǔn)方程是
.
(Ⅱ)設(shè),
,依題意有
,
,
,
.
因?yàn)?/span>,所以
,且
,
所以,
,即
.
因?yàn)辄c(diǎn)在橢圓上,所以
,即
.
所以,解得
,或
.
因?yàn)榫€段與線段
交于點(diǎn)
,
所以,所以
.
因?yàn)橹本€的方程為
,
將代入直線
的方程得到
.
所以點(diǎn)的坐標(biāo)為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方體ABCD-A′B′C′D′的外接球的體積為π,將正方體割去部分后,剩余幾何體的三視圖如圖所示,則剩余幾何體的表面積為( )
A. +
B. 3+
或
+
C. 3+
D.
+
或2+
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)是定義在區(qū)間(-∞,+∞)上且以2為周期的函數(shù),對(duì)k∈Z,用Ik表示區(qū)間(2k-1,2k+1),已知當(dāng)x∈I0時(shí),f(x)=x2.求f(x)在Ik上的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,圓
的參數(shù)方程為
(
為參數(shù),
是大于0的常數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(1)求圓的極坐標(biāo)方程和圓
的直角坐標(biāo)方程;
(2)分別記直線:
,
與圓
、圓
的異于原點(diǎn)的焦點(diǎn)為
,
,若圓
與圓
外切,試求實(shí)數(shù)
的值及線段
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(0)=0,當(dāng)x>0時(shí),
f(x)=.
(1)求函數(shù)f(x)的解析式;
(2)解不等式f(x2-1)>-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,底面
是矩形,側(cè)棱
底面
,
分別是
的中點(diǎn),
,
.
(Ⅰ)求證: 平面
;
(Ⅱ)求與平面
所成角的正弦值;
(Ⅲ)在棱上是否存在一點(diǎn)
,使得平面
平面
?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線y=t與曲線C:y=x(x﹣3)2的三個(gè)交點(diǎn)分別為A(a,t),B(b,t),C(c,t),且a<b<c.現(xiàn)給出如下結(jié)論:
①abc的取值范圍是(0,4);
②a2+b2+c2為定值;③a+b+c=6
其中正確結(jié)論的為_______
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為
,且橢圓
過(guò)點(diǎn)
,直線
過(guò)橢圓
的右焦點(diǎn)
且與橢圓
交于
兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn),求證:若圓
與直線
相切,則圓
與直線
也相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)設(shè),若
,對(duì)任意
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com