【題目】已知圓x2+y2+x﹣6y+m=0和直線(xiàn)x+2y﹣3=0交于P、Q兩點(diǎn),
(1)求實(shí)數(shù)m的取值范圍;
(2)求以PQ為直徑且過(guò)坐標(biāo)原點(diǎn)的圓的方程.
【答案】
(1)解:圓x2+y2+x﹣6y+m=0,可化為(x+ )2+(y﹣3)2=﹣m+ ,
∴ < ,
∴﹣m+ > ,
∴m<8;
(2)解:設(shè)P(x1,y1),Q(x2,y2),
由題意得:OP、OQ所在直線(xiàn)互相垂直,則kOPkOQ=﹣1,∴x1x2+y1y2=0,
又因?yàn)閤1=3﹣2y1,x2=3﹣2y2,
所以(3﹣2y1)(3﹣2y2)+y1y2=0,即5y1y2﹣6(y1+y2)+9=0①,
將直線(xiàn)l的方程:x=3﹣2y代入圓的方程得:5y2﹣20y+12+m=0,
所以y1+y2=4,y1y2= ,
代入①式得:5× ﹣6×4+9=0,解得m=3,
故實(shí)數(shù)m的值為3
【解析】(1)利用圓心到直線(xiàn)的距離小于半徑,即可求實(shí)數(shù)m的取值范圍;(2)設(shè)點(diǎn)P(x1 , y1),Q(x2 , y2),由題意得OP、OQ所在直線(xiàn)互相垂直,即kOPkOQ=﹣1,亦即x1x2+y1y2=0,根據(jù)P、Q在直線(xiàn)l上可變?yōu)殛P(guān)于y1、y2的表達(dá)式,聯(lián)立直線(xiàn)方程、圓的方程,消掉x后得關(guān)于y的二次方程,將韋達(dá)定理代入上述表達(dá)式可得m的方程,解出即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形草坪AMPN中,點(diǎn)C在對(duì)角線(xiàn)MN上.CD垂直于AN于點(diǎn)D,CB垂直于AM于點(diǎn)B,|CD|=|AB|=3米,|AD|=|BC|=2米,設(shè)|DN|=x米,|BM|=y米.求這塊矩形草坪AMPN面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)p:x2﹣4x﹣12≤0,q:(x﹣m)(x﹣m﹣1)≤0
(1)若m=2,那么p是q的什么條件;
(2)若q是p的充分不必要條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ln(a﹣ )(a∈R).若關(guān)于x的方程ln[(4﹣a)x+2a﹣5]﹣f(x)=0的解集中恰好有一個(gè)元素,則實(shí)數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓(x+1)2+y2=8內(nèi)有一點(diǎn)P(﹣1,2),AB過(guò)點(diǎn)P,
(1)若弦長(zhǎng) ,求直線(xiàn)AB的傾斜角;
(2)若圓上恰有三點(diǎn)到直線(xiàn)AB的距離等于 ,求直線(xiàn)AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐S﹣ABC中,E為棱SC的中點(diǎn),若AC=2 ,SA=SB=AB=BC=SC=2,則異面直線(xiàn)AC與BE所成的角為( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓 的離心率 ,橢圓上一點(diǎn)A到橢圓C兩焦點(diǎn)的距離之和為4.
(1)求橢圓C的方程;
(2)直線(xiàn)l與橢圓交于A,B兩點(diǎn),且AB中點(diǎn)為 ,求直線(xiàn)l方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)對(duì)任意的x都有f(x+2)﹣f(x)=﹣4x+4,且f(0)=0.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=f(x)+m,(m∈R). ①若存在實(shí)數(shù)a,b(a<b),使得g(x)在區(qū)間[a,b]上為單調(diào)函數(shù),且g(x)取值范圍也為[a,b],求m的取值范圍;
②若函數(shù)g(x)的零點(diǎn)都是函數(shù)h(x)=f(f(x))+m的零點(diǎn),求h(x)的所有零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=( )x﹣2x .
(1)若f(x)= ,求x的值;
(2)若不等式f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)對(duì)所有θ∈[0, ]都成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com