12.計(jì)算;
(1)cos(α+45°)cos(15°+α)-sin(α+45°)cos(105°+α)
(2)$\frac{{sin{{47}°}-sin{{17}°}cos{{30}°}}}{{cos{{17}°}}}$.

分析 (1)誘導(dǎo)公式化簡,再根據(jù)和與差的公式求解可得答案.
(2)利用和與差公式把sin47°=sin(30°+17°)帶入化簡可得答案.

解答 解:(1)由cos(α+45°)cos(15°+α)-sin(α+45°)cos(105°+α)=cos(α+45°)cos(15°+α)-sin(α+45°)cos(90°+15°+α)=cos(α+45°)cos(15°+α)+sin(α+45°)sin(15°+α)=cos(α+45°-α-15°)=cos30°=$\frac{\sqrt{3}}{2}$.
(2)$\frac{{sin{{47}°}-sin{{17}°}cos{{30}°}}}{{cos{{17}°}}}$=$\frac{sin(30°+17°)-sin17°cos30°}{cos17°}$=$\frac{sin30°cos17°}{cos17°}=sin30°=\frac{1}{2}$

點(diǎn)評 本題考查了誘導(dǎo)公式化簡,和與差的公式的計(jì)算,計(jì)較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若log23=m,則4m+8m=36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.化簡$\frac{1}{{sin{{15}°}}}-\frac{1}{{cos{{15}°}}}$的結(jié)果是( 。
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.$2\sqrt{2}$D.$-2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.k為何值時,直線y=kx+2 和橢圓 2x2+3y2=6相交( 。
A.$\{k\left|{k>\frac{{\sqrt{6}}}{3}}\right.或k<-\frac{{\sqrt{6}}}{3}\}$B.$\{k\left|{-\frac{{\sqrt{6}}}{3}<k<\frac{{\sqrt{6}}}{3}}\right.\}$C.$\{k\left|{k≥\frac{{\sqrt{6}}}{3}}\right.或k≤-\frac{{\sqrt{6}}}{3}\}$D.$\{k\left|{-\frac{{\sqrt{6}}}{3}≤k≤\frac{{\sqrt{6}}}{3}}\right.\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知f(x)=2f′(1)x+lnx,則f′(2)=(  )
A.-$\frac{3}{2}$B.-1C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,三棱錐O-ABC中,AO⊥平面OBC,且OA=OB=OC=2,∠BOC=60°,點(diǎn)E,F(xiàn)分別是AB,AC的中點(diǎn),H為EF的中點(diǎn),過EF的動平面與線段OA交于點(diǎn)A1,與線段OB,OC的延長線分別相交于點(diǎn)B1,C1
(Ⅰ)證明:B1C1⊥平面OAH;
(Ⅱ)當(dāng)|BB1|=2|OA1|-2時,求二面角A-A1E-F的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)y=x2+$\frac{1}{x}$+1在x=1處的切線方程是y=x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知實(shí)數(shù)x,y滿足約束條件$\left\{{\begin{array}{l}{2x-y+1≥0}\\{x≤1}\\{x-y≤0}\end{array}}\right.$則z=3x-2y的最小值是-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知 a=${4}^{\frac{2}{3}}$,b=${3}^{\frac{2}{3}}$,${c=25}^{\frac{1}{3}}$,則( 。
A.b<c<aB.a<b<cC.b<a<cD.c<a<b

查看答案和解析>>

同步練習(xí)冊答案