7.已知f(x)=2f′(1)x+lnx,則f′(2)=( 。
A.-$\frac{3}{2}$B.-1C.1D.$\frac{3}{2}$

分析 根據(jù)導(dǎo)數(shù)的運(yùn)算法則求導(dǎo)即可.

解答 解:∵f(x)=2f′(1)x+lnx,
∴f′(x)=2f′(1)+$\frac{1}{x}$,
令x=1時(shí),
則f′(1)=2f′(1)+1,
∴f′(1)=-1,
∴f′(2)=2×(-1)+$\frac{1}{2}$=-$\frac{3}{2}$,
故選:A

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)算法則,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知圓C:x2+y2+Dx+Ey+3=0關(guān)于直線x+y-1=0對(duì)稱,半徑為$\sqrt{2}$,且圓心C在第二象限.
(Ⅰ)求圓C的方程;
(Ⅱ)不過(guò)原點(diǎn)的直線l在x軸、y軸上的截距相等,且與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=2x-(x+1)lnx,g(x)=xlnx-ax2-1.
(1)求證:對(duì)?x∈(1,+∞),f(x)<2;
(2)若方程g(x)=0有兩個(gè)根,設(shè)兩根分別為x1、x2,求證:$\frac{ln{x}_{1}+ln{x}_{2}}{2}$>1+$\frac{2}{\sqrt{{x}_{1}{x}_{2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知a,b∈R,i是虛數(shù)單位,若i(1-ai)=1-bi,則a-b=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)M是橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$上的一點(diǎn),F(xiàn)1,F(xiàn)2為焦點(diǎn),且$∠{F_1}M{F_2}=\frac{π}{3}$,則△MF1F2的面積為( 。
A.3B.$16(2+\sqrt{3})$C.$16(2-\sqrt{3})$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.計(jì)算;
(1)cos(α+45°)cos(15°+α)-sin(α+45°)cos(105°+α)
(2)$\frac{{sin{{47}°}-sin{{17}°}cos{{30}°}}}{{cos{{17}°}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.參數(shù)方程$\left\{\begin{array}{l}x=4cosθ\\ y=3sinθ\end{array}$(θ為參數(shù))表示的曲線是( 。
A.以$({±\sqrt{7},0})$為焦點(diǎn)的橢圓B.以(±4,0)為焦點(diǎn)的橢圓
C.離心率為$\frac{{\sqrt{7}}}{5}$的橢圓D.離心率為$\frac{3}{5}$的橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如果$\frac{x^2}{4}+\frac{y^2}{m}=1$表示焦點(diǎn)在x軸的橢圓,則實(shí)數(shù)m的取值范圍是( 。
A.(0,4]B.(0,4)C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)$f(x)=\frac{1}{2}{x^2}-lnx$的單調(diào)減區(qū)間( 。
A.(-1,1]B.(0,1]C.(1,+∞)D.(0,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案