3.側(cè)棱長(zhǎng)是2的正三棱錐,其底面邊長(zhǎng)是1,則棱錐的高是$\frac{\sqrt{33}}{3}$.

分析 由題意畫出圖形,然后通過求解直角三角形得答案.

解答 解:如圖,
過P作PO⊥平面ABC,垂足為O,
∵底面是正三角形,∴O為底面三角形的中線,
連接BO并延長(zhǎng),交AC于D,又底面邊長(zhǎng)為1,
則BO=$\frac{2}{3}BD=\frac{2}{3}\sqrt{{1}^{2}-(\frac{1}{2})^{2}}=\frac{\sqrt{3}}{3}$,
又PB=2,則PO=$\sqrt{{2}^{2}-(\frac{\sqrt{3}}{3})^{2}}=\frac{\sqrt{33}}{3}$.
故答案為:$\frac{\sqrt{33}}{3}$.

點(diǎn)評(píng) 本題考查棱錐的結(jié)構(gòu)特征,考查了空間想象能力和思維能力,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.1+7+72+…+72016被6除所得的余數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在△ABC中,內(nèi)角A,B,C所對(duì)邊分別為a、b、c,其中A=120°,b=1,且△ABC的面積為$\sqrt{3}$,則$\frac{a-b}{sinA-sinB}$=( 。
A.$\sqrt{21}$B.$\frac{2\sqrt{29}}{3}$C.2$\sqrt{21}$D.2$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>0,b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,過焦點(diǎn)F的直線與橢圓交于A,B兩點(diǎn),線段AB的中點(diǎn)為M(-$\frac{2}{3}$,$\frac{1}{3}$).
(Ⅰ)求橢圓方程;
(Ⅱ)過點(diǎn)A與橢圓只有一個(gè)公共點(diǎn)的直線為l1,過點(diǎn)F與AF垂直的直線為l2,求證l1與l2的交點(diǎn)在定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)T(-2,$\sqrt{3}$)在橢圓Γ上,且|TF1|+|TF2|=8.
(1)求橢圓的方程;
(2)點(diǎn)P,Q在橢圓Γ上,O為坐標(biāo)原點(diǎn),且直線OP,OQ的斜率之積為$\frac{1}{4}$,求證:|OP|2+|OQ|2為定值;
(3)直線l過點(diǎn)(-1,0)且與橢圓Γ交于A,B兩點(diǎn),問在x軸上是否存在定點(diǎn)M,使得$\overrightarrow{MA}$$•\overrightarrow{MB}$為常數(shù)?若存在,求出點(diǎn)M坐標(biāo)以及此常數(shù)的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.正四棱錐的底面面積為4,高為3,設(shè)它的側(cè)棱與底面所成的角為α,則sinα=$\frac{3\sqrt{11}}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知直線ax-y-1=0與圓x2+y2+2x+2by-4=0相交于A、B兩點(diǎn),若線段AB中點(diǎn)為(1,1),則a、b的值分別為( 。
A.-1,1B.-1,-1C.2,-2D.2,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.是否存在實(shí)數(shù)a,b,c,使得12+22+…n2=an3+bn2+cn對(duì)一切n∈N*成立?若存在,求出實(shí)數(shù)a,b,c,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在一次對(duì)由42名學(xué)生參加的課外籃球、排球興趣小組(每人參加且只參加一個(gè)興趣小組)情況調(diào)查中,經(jīng)統(tǒng)計(jì)得到如下2×2列聯(lián)表:(單位:人)
籃球排球總計(jì)
男同學(xué)16622
女同學(xué)81220
總計(jì)241842
(1)據(jù)此判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為參加“籃球小組”或“排球小組”與性別有關(guān)?
(2)在統(tǒng)計(jì)結(jié)果中,按性別用分層抽樣的方法抽取7名同學(xué)進(jìn)行座談,甲、乙兩名女同學(xué)中被抽中的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
下面是臨界值表供參考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
參考公式:k2=$\frac{n(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案