精英家教網 > 高中數學 > 題目詳情
函數y=x2與函數y=xlgx在區(qū)間(0,+∞)上增長較快的一個是
 
考點:對數函數、指數函數與冪函數的增長差異
專題:常規(guī)題型,函數的性質及應用
分析:在區(qū)間(0,+∞)上,指數函數增長快于冪函數,冪函數快于對數函數.
解答:解:冪函數的增長速度要比對數函數快,
故答案為:y=x2
點評:考查了指數函數,冪函數,對數函數的增長差異,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若M(2,3),N(4,-5),直線l過P(1,2),且點M,N到l的距離相等,則直線l的方程為( 。
A、4x+y-6=0
B、x+4y-6=0
C、3x+2y-7=0或4x+y-6=0
D、2x+3y-7=0或x+4y-6=0

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
a
=(1-t,2t-1,0),
b
=(2,t,t),則|
a
-
b
|的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知
.
z
是復數z的共軛復數,z+
.
z
+z•
.
z
=0,則復數z在復平面內對應的點的軌跡是( 。
A、圓B、橢圓C、雙曲線D、拋物線

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面斜坐標系xoy中∠xoy=45°,點P的斜坐標定義為:“若
OP
=x0
e1
+y0
e2
(其中
e1
,
e2
分別為與斜坐標系的x軸,y軸同方向的單位向量),則點P的坐標為(x0,y0)”.若F1(-1,0),F2(1,0),且動點M(x,y)滿足|
MF
1
|=|
MF
2
|
,則點M在斜坐標系中的軌跡方程為( 。
A、x-
2
y=0
B、x+
2
y=0
C、
2
x-y=0
D、
2
x+y=0

查看答案和解析>>

科目:高中數學 來源: 題型:

某學生在復習指數函數的圖象時發(fā)現:在y軸左邊,y=3x與y=2x的圖象均以x軸負半軸為漸近線,當x=0時,兩圖象交于點(0,1).這說明在y軸的左邊y=3x與y=2x的圖象從左到右開始時幾乎一樣,后來y=2x的圖象變化加快使得y=2x與y=3x的圖象逐漸遠離,而當x經過某一值x0以后 y=3x的圖象變化加快使得y=2x與y=3x的圖象又逐漸接近,直到x=0時兩圖象交于點(0,1).那么x0=( 。
A、1n(1og32)
B、1og
2
3
(1og23)
C、1og3(1og23)-1og2(1og23)
D、-1og23

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,O為坐標原點,直線l:x-ky+1=0與圓C:x2+y2=4相交于A,B兩點,
OM
=
OA
+
OB
.若點M在圓C上,則實數k=( 。
A、-2B、-1C、0D、1

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)的圖象是如圖所示的折線段OAB,其中A(1,2),B(3,0),那么函數y=xf(x)的單調增區(qū)間為(  )
A、(0,1)
B、(0,
3
2
C、(1,
3
2
D、(
3
2
,3)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
m
=(x+1,2),
n
=(3,2y-1),若
m
n
,則8x+16y的最小值為( 。
A、
2
B、4
C、2
2
D、4
2

查看答案和解析>>

同步練習冊答案