若sin(
π
6
+α)=
3
5
,則sin2
π
3
-α)=
 
考點:同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:已知等式左邊的角度變形后,利用誘導(dǎo)公式化簡求出cos(
π
3
-α),再利用同角三角函數(shù)間的基本關(guān)系即可求出所求式子的值.
解答: 解:∵sin(
π
6
+α)=sin[
π
2
-(
π
3
-α)]=cos(
π
3
-α)=
3
5
,
∴sin2
π
3
-α)=1-cos2
π
3
-α)=1-
9
25
=
16
25

故答案為:
16
25
點評:此題考查了同角三角函數(shù)基本關(guān)系的運用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-3x-10≤0},B={x|(x-m+1)(x-2m-1)<0}.
(1)求A∩Z;
(2)若A∪B=A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinxcosx-2cos2x(x∈R).
(Ⅰ)將函數(shù)f(x)的圖象向右平移
π
6
個單位長度后得到g(x),求函數(shù)g(x)的對稱軸方程;
(Ⅱ)當(dāng)x∈[0,
π
2
]時,求函數(shù)f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
(1)存在實數(shù)x,使sinx+cosx=
π
3
;  
(2)若α,β是銳角△ABC的內(nèi)角,sinα>cosβ;
(3)在△ABC中,表達式cos(B+C)+cosA為常數(shù);
(4)函數(shù)y=sin(
2
3
x-
2
)是偶函數(shù);  
(5)函數(shù)y=sin2x的圖象向右平移
π
4
個單位,得到y(tǒng)=sin(2x+
π
4
)的圖象.
其中正確的命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位有職工960人,其中青年職工420人,中年職工300人,老年職工240人,為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為14人,則樣本容量為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某電視臺曾在某時間段連續(xù)播放5個不同的商業(yè)廣告,現(xiàn)在要在該時間段新增播一個商業(yè)廣告與兩個不同的公益宣傳廣告,且要求兩個公益宣傳廣告既不能連續(xù)播放也不能在首尾播放,則在不改變原有5個不同的商業(yè)廣告的相對播放順序的前提下,不同的播放順序有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)的圖象如圖所示,為了得到g(x)=-Acosωx的圖象,可以將f(x)的圖象向右平移
 
個單位長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<θ<
π
3
,且cos(θ-
π
3
)=
3
5
,則sinθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,an+1=
2an
2+an
(n∈N+)且a7=
1
2
,則a5=(  )
A、1
B、
2
3
C、
2
5
D、-1

查看答案和解析>>

同步練習(xí)冊答案