若函數(shù)y1=sin(2x1)+
1
2
(x1∈[0,π]),函數(shù)y2=x2+3,則(x1-x22+(y1-y22的最小值為( 。
A、
2
12
π+
5
2
-
6
4
B、
2
12
π
C、(
5
2
-
6
4
2
D、
(π-3
3
+15)
2
72
分析:通過(guò)所求表達(dá)式的最值,轉(zhuǎn)化為直線與曲線上的兩點(diǎn)的距離的平方,通過(guò)導(dǎo)數(shù)利用切線斜率求出切點(diǎn)坐標(biāo),然后求出最值.
解答:解:由題意(x1-x22+(y1-y22的最小值,可知直線與曲線上的兩點(diǎn)的距離的平方,
函數(shù)y1=sin(2x1)+
1
2
(x1∈[0,π]),
y1′=2cos(2x1),x1∈[0,π],
2cos(2x1)=1,解得x1=
π
6
.此時(shí)y1=
3
+1
2

點(diǎn)(
π
6
3
+1
2
)到直線y2=x2+3的距離的平方為:(
|
π
6
-
3
+1
2
+3|
2
)
2
=
(π-3
3
+15)
2
72

故選:D.
點(diǎn)評(píng):本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,兩點(diǎn)間距離公式的應(yīng)用.考查計(jì)算能力以及轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(x1,y1),B(x2,y2)是函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<
π
2
)圖象上的任意兩點(diǎn),若|y1-y2)=2時(shí),|x1-x2|的最小值為
π
2
,且函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(0,
1
2
).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且2sinAsinC+cos2B=1,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下四個(gè)命題,所有真命題的序號(hào)為
 

①?gòu)目傮w中抽取的樣本(x1,y1),(x2,y2),L,(xn,yn),若記
.
x
=
1
n
i=1nxi,
.
y
=
1
n
i=1nyi,則回歸直線y=bx+a必過(guò)點(diǎn)(
.
x
,
.
y

②將函數(shù)y=cos2x的圖象向右平移
π
3
個(gè)單位,得到函數(shù)y=sin(2x-
π
6
)
的圖象;
③已知數(shù)列an,那么“對(duì)任意的n∈N*,點(diǎn)Pn(n,aa)都在直線y=2x+1上”是{an}為等差數(shù)列的“充分不必要條件”
④命題“若x≥2,則x≥2或x≤-2”的否命題是“若{x}≥2,則-2<x<2”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•徐州一模)已知角φ的終邊經(jīng)過(guò)點(diǎn)P(1,-1),點(diǎn)A(x1,y1),B(x2,y2)是函數(shù)f(x)=sin(ωx+φ)(ω>0)圖象上的任意兩點(diǎn),若|f(x1)-f(x2)|=2時(shí),|x1-x2|的最小值為
π
3
,則f(
π
2
)
的值是
-
2
2
-
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:臨沂模擬 題型:填空題

給出以下四個(gè)命題,所有真命題的序號(hào)為_(kāi)_____.
①?gòu)目傮w中抽取的樣本(x1,y1),(x2,y2),L,(xn,yn),若記
.
x
=
1
n
i=1nxi,
.
y
=
1
n
i=1nyi,則回歸直線y=bx+a必過(guò)點(diǎn)(
.
x
.
y

②將函數(shù)y=cos2x的圖象向右平移
π
3
個(gè)單位,得到函數(shù)y=sin(2x-
π
6
)
的圖象;
③已知數(shù)列an,那么“對(duì)任意的n∈N*,點(diǎn)Pn(n,aa)都在直線y=2x+1上”是{an}為等差數(shù)列的“充分不必要條件”
④命題“若x≥2,則x≥2或x≤-2”的否命題是“若{x}≥2,則-2<x<2”

查看答案和解析>>

同步練習(xí)冊(cè)答案