質(zhì)量m=2kg的物體作直線運動,運動距離s(單位:m)關(guān)于時間t(單位:s)的函數(shù)是s(t)=3t2+1,且物體的動能U=
1
2
mv2,則物體運動后第3s時的動能為( 。
A、18焦耳B、361焦耳
C、342焦耳D、324焦耳
考點:變化的快慢與變化率
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:先求質(zhì)點的運動方程為s=3t2+1的導(dǎo)數(shù),再求得t=3秒時的導(dǎo)數(shù),得到所求的瞬時速度,即可求出物體運動后第3s時的動能.
解答: 解:∵質(zhì)點的運動方程為s=3t2+1
∴s′=6t
∴該質(zhì)點在t=3秒的瞬時速度為18,
∴物體運動后第3s時的動能為
1
2
mv2=324.
故選:D.
點評:本題考查變化的快慢與變化率,正確解答本題關(guān)鍵是理解導(dǎo)數(shù)的物理意義,即了解函數(shù)的導(dǎo)數(shù)與瞬時速度的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直角三角形的周長為定值2l,則它的面積的最大值為( 。
A、2
2
l2
B、3
2
l2
C、(3+2
2
)l2
D、(3-2
2
)l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,邊AD所在直線方程為2x-y-2=0,頂點C(2,0).
(Ⅰ)求邊BC所在直線的方程;
(Ⅱ)求AD邊上的高CE所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若?a∈(0,+∞),?θ∈R使asinθ≥a成立,則cos(θ-
π
6
)的值為( 。
A、
3
2
B、
1
2
C、±
1
2
D、±
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求下列函數(shù)的導(dǎo)數(shù)
①y=x(x2+
1
x
+
1
x3
);  ②y=(
x
+1)(
1
x
-1);
(2)已知函數(shù)f(x)=3x+2cosx+sinx,且a=f′(
π
2
)
,f′(x)是f(x)的導(dǎo)函數(shù),求過曲線y=x3上一點P(a,b)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)f(x)=x0-1的奇偶性:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P:函數(shù)y=cx在R上單調(diào)遞減,Q:函數(shù)y=x2+|x|+2c的最小值大于1.如果命題“p∨q”為真命題,且“p∧q”為假命題,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對有n(n≥4)個元素的總體{1,2,3,…,n}進行抽樣,先將總體分成兩個子總體{1,2,3,…,m}和{m+1,m+2,…,n}(m是給定的正整數(shù),且2≤m≤n-2),再從每個子總體中各隨機抽取2個元素組成樣本.用Pij表示元素i和j同時出現(xiàn)在樣本中的概率.
(1)求P1n的表達式(用m,n表示);
(2)求所有Pij(1≤i<j≤n)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px的焦點F到其準線的距離是8,拋物線的準線與x軸的交點為K,點A在拋物線上且|AK|=
2
|AF|,則△AFK的面積為
 

查看答案和解析>>

同步練習(xí)冊答案