設點P在曲線yex上,點Q在曲線y=ln(2x)上,則|PQ|的最小值為(  ).
A.1-ln 2B.(1-ln 2)C.1+ln 2 D.(1+ln 2)
B
由題意知函數(shù)yexy=ln(2x)互為反函數(shù),其圖象關于直線yx對稱,兩曲線上點之間的最小距離就是yxyex上點的最小距離的2倍.設yex上點(x0,y0)處的切線與直線yx平行.則ex0=1,∴x0=ln 2,y0=1,
∴點(x0,y0)到yx的距離為(1-ln 2),
則|PQ|的最小值為(1-ln 2)×2=(1-ln 2).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

現(xiàn)有A,B兩個投資項目,投資兩項目所獲得利潤分別是(萬元),它們與投入資金(萬元)的關系依次是:其中平方根成正比,且當為4(萬元)時為1(萬元),又成正比,當為4(萬元)時也是1(萬元);某人甲有3萬元資金投資.
(1)分別求出,的函數(shù)關系式;
(2)請幫甲設計一個合理的投資方案,使其獲利最大,并求出最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某公司試銷一種成本單價為500元/件的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元/件.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量(件)與銷售單價(元/件)可近似看作一次函數(shù)的關系(如圖所示).

(1)根據(jù)圖象,求一次函數(shù)的表達式;
(2)設公司獲得的毛利潤(毛利潤=銷售總價—成本總價)為元. 試用銷售單價表示毛利潤并求銷售單價定為多少時,該公司獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某跨國飲料公司對全世界所有人均GDP(即人均純收入)在0.5—8千美元的地區(qū)銷售,該公司M飲料的銷售情況的調(diào)查中發(fā)現(xiàn):人均GDP處在中等的地區(qū)對該飲料的銷售量最多,然后向兩邊遞減.
(1)下列幾個模擬函數(shù)中(x表示人均GDP,單位:千美元;y表示年人均M飲料的銷量,單位:升),用哪個來描述人均,飲料銷量與地區(qū)的人均GDP的關系更合適?說明理由.
A.B.C.D.
(2)若人均GDP為1千美元時,年人均M飲料的銷量為2升;人均GDP為4千美元時,年人均M飲料的銷量為5升;把你所選的模擬函數(shù)求出來.;
(3)因為M飲料在N國被檢測出殺蟲劑的含量超標,受此事件影響,M飲料在人均GDP不高于3千美元的地區(qū)銷量下降5%,不低于6千美元的地區(qū)銷量下降5%,其他地區(qū)的銷量下降10%,根據(jù)(2)所求出的模擬函數(shù),求在各個地區(qū)中,年人均M飲料的銷量最多為多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設函數(shù)f(x)=x-,對任意x∈[1,+∞),f(2mx)+2mf(x)<0恒成立,則實數(shù)m的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)f(x)的定義域為R,f(-1)=2,對任意x∈R,f′(x)>2,則f(x)>2x+4的解集為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)f(x)=則函數(shù)f(x)的零點為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

根據(jù)統(tǒng)計,一名工人組裝第x件某產(chǎn)品所用的時間(單位:分鐘)為f(x)= (Ac為常數(shù)).已知工人組裝第4件產(chǎn)品用時30分鐘,組裝第A件產(chǎn)品用時15分鐘,那么cA的值分別是 (  ).
A.75,25 B.75,16C.60,25D.60,16

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知平面上的線段及點,在上任取一點,線段長度的最小值稱為點到線段的距離,記作.設是長為2的線段,點集所表示圖形的面積為________.

查看答案和解析>>

同步練習冊答案