函數(shù)f(x)=2x2-mx+2當(dāng)x∈[-2,+∞)時(shí)是增函數(shù),則m的取值范圍是(  )
A.(-∞,+∞)B.[8,+∞) C.(-∞,-8]D.(-∞,8]
C

試題分析:函數(shù)f(x)=2x2-mx+2的對(duì)稱(chēng)軸是,由于函數(shù)f(x)在[-2,+∞)上是增函數(shù),則,解得,則m的取值范圍是(-∞,-8]。故選C。
點(diǎn)評(píng):本題的函數(shù)是二次函數(shù),其對(duì)稱(chēng)軸兩邊的單調(diào)性不一致,由于此函數(shù)的開(kāi)口向上,故對(duì)稱(chēng)軸左邊為減函數(shù),右邊為增函數(shù)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

是定義在上的減函數(shù),滿(mǎn)足.
(1)求證:;
(2)若,解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性:
(2)若函數(shù)的圖像上存在不同兩點(diǎn),設(shè)線(xiàn)段的中點(diǎn)為,使得在點(diǎn)處的切線(xiàn)與直線(xiàn)平行或重合,則說(shuō)函數(shù)是“中值平衡函數(shù)”,切線(xiàn)叫做函數(shù)的“中值平衡切線(xiàn)”。試判斷函數(shù)是否是“中值平衡函數(shù)”?若是,判斷函數(shù)的“中值平衡切線(xiàn)”的條數(shù);若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)滿(mǎn)足對(duì)任意實(shí)數(shù),都有成立,則實(shí)數(shù)的取值范圍為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)互為反函數(shù),且函數(shù)與函數(shù)也互為反函數(shù),若=(    )
A.0B.1C.-2010 D.-2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知
(1)求當(dāng)時(shí),函數(shù)的表達(dá)式;
(2)作出函數(shù)的圖象,并指出其單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)等于                處取得極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),.
(Ⅰ) 求函數(shù)在點(diǎn)處的切線(xiàn)方程;
(Ⅱ) 若函數(shù)在區(qū)間上均為增函數(shù),求的取值范圍;
(Ⅲ) 若方程有唯一解,試求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=.
(1)若f(x)=2,求x的值;
(2)判斷x>0時(shí),f(x)的單調(diào)性;
(3)若恒成立,求m的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案