(本小題滿分13分) 設(shè)橢圓E中心在原點,焦點在x軸上,短軸長為4,點M(2,)在橢圓上,。
(1)求橢圓E的方程;
(2)設(shè)動直線L交橢圓E于A、B兩點,且,求△OAB的面積的取值范圍。
(1);(2)S。

試題分析:(1)因為橢圓E: (a>b>0)過M(2,) ,2b=4
故可求得b=2,a=2  橢圓E的方程為      ……2分
(2)設(shè)A(x1,y1),B(x2,y2),當(dāng)直線L斜率存在時設(shè)方程為,
解方程組,即,
則△=,
(*)……………………4分
,要使,需使,即,
所以, 即   ①………………………7分
將它代入(*)式可得……………………………8分
P到L的距離為

及韋達定理代入可得……………………10分
當(dāng)
 故……………12分
當(dāng)時,
當(dāng)AB的斜率不存在時,  ,
綜上S……………………………13分
點評:求橢圓的標(biāo)準(zhǔn)方程是解析幾何的基本問題,涉及直線與橢圓的位置關(guān)系問題,常常運用韋達定理,本題屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知、為橢圓的焦點,且直線與橢圓相切.
(Ⅰ)求橢圓方程;
(Ⅱ)過的直線交橢圓于、兩點,求△的面積的最大值,并求此時直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分10分)(Ⅰ) 設(shè)橢圓方程的左、右頂點分別為,點M是橢圓上異于的任意一點,設(shè)直線的斜率分別為,求證為定值并求出此定值;
(Ⅱ)設(shè)橢圓方程的左、右頂點分別為,點M是橢圓上異于的任意一點,設(shè)直線的斜率分別為,利用(Ⅰ)的結(jié)論直接寫出的值。(不必寫出推理過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如果兩個橢圓的離心率相等,那么就稱這兩個橢圓相似.已知橢圓與橢圓相似,且橢圓的一個短軸端點是拋物線的焦點.
(Ⅰ)試求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)橢圓的中心在原點,對稱軸在坐標(biāo)軸上,直線與橢圓交于兩點,且與橢圓交于兩點.若線段與線段的中點重合,試判斷橢圓與橢圓是否為相似橢圓?并證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,設(shè)橢圓的左右焦點分別為,過焦點的直線交橢圓于兩點,若的內(nèi)切圓的面積為,設(shè)兩點的坐標(biāo)分別為,則值為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)F1F2分別是橢圓的左、右焦點,P為橢圓上任一點,點M的坐標(biāo)為(6,4),則的最大值為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,且過點

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)四邊形ABCD的頂點在橢圓上,且對角線A   C、BD過原點O,若,
(i) 求的最值.
(ii) 求證:四邊形ABCD的面積為定值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,直線:y=x+m
(1)若與橢圓有一個公共點,求的值;
(2)若與橢圓相交于P,Q兩點,且|PQ|等于橢圓的短軸長,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓的標(biāo)準(zhǔn)方程為,若其焦點在軸上,則的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案