【題目】“未來肯定是非接觸的,無感支付的方式將成為主流,這有助于降低交互門檻”.云從科技聯(lián)合創(chuàng)始人姚志強(qiáng)告訴南方日報(bào)記者.相對于主流支付方式二維碼支付,刷臉支付更加便利,以前出門一部手機(jī)解決所有,而現(xiàn)在連手機(jī)都不需要了,畢竟,手機(jī)支付還需要攜帶手機(jī),打開二維碼也需要時(shí)間和手機(jī)信號.刷臉支付將會替代手機(jī),成為新的支付方式.某地從大型超市門口隨機(jī)抽取50名顧客進(jìn)行了調(diào)查,得到了如下列聯(lián)表:
男性 | 女性 | 總計(jì) | |
刷臉支付 | 18 | 25 | |
非刷臉支付 | 13 | ||
總計(jì) | 50 |
(1)請將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有95%的把握認(rèn)為使用刷臉支付與性別有關(guān)?
(2)從參加調(diào)查且使用刷臉支付的顧客中隨機(jī)抽取2人參加抽獎(jiǎng)活動,抽獎(jiǎng)活動規(guī)則如下:
“一等獎(jiǎng)”中獎(jiǎng)概率為0.25,獎(jiǎng)品為10元購物券張(,且),“二等獎(jiǎng)”中獎(jiǎng)概率0.25,獎(jiǎng)品為10元購物券兩張,“三等獎(jiǎng)”中獎(jiǎng)概率0.5,獎(jiǎng)品為10元購物券一張,每位顧客是否中獎(jiǎng)相互獨(dú)立,記參與抽獎(jiǎng)的兩位顧客中獎(jiǎng)購物券金額總和為元,若要使的均值不低于50元,求的最小值.
附:,其中.
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.869 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),以軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(為常數(shù),且),直線與曲線交于兩點(diǎn).
(1)若,求實(shí)數(shù)的值;
(2)若點(diǎn)的直角坐標(biāo)為,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程及直線的普通方程;
(2)設(shè)直線與曲線交于,兩點(diǎn)(點(diǎn)在點(diǎn)左邊)與直線交于點(diǎn).求和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C:1(a0,b0)的左右焦點(diǎn)分別為F1,F2,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)P在雙曲線的右支上,且滿足|F1F2|=2|OP|.若直線PF2與雙曲線C只有一個(gè)交點(diǎn),則雙曲線C的離心率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=a(lnx2)1在定義域(0,2)內(nèi)有兩個(gè)極值點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)設(shè)x1和x2是f(x)的兩個(gè)極值點(diǎn),求證:lnx1+lnx2+lna0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex﹣ax+a(a∈R),其圖象與x軸交于A(x1,0),B(x2,0)兩點(diǎn),且x1<x2.
(1)求a的取值范圍;
(2)證明:f′()<0(f′(x)為函數(shù)f(x)的導(dǎo)函數(shù));
(3)設(shè)點(diǎn)C在函數(shù)y=f(x)的圖象上,且△ABC為等腰直角三角形,記t,求(a﹣1)(t﹣1)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正四棱錐的底面邊長為,、分別為、的中點(diǎn).
(1)當(dāng)時(shí),證明:平面平面;
(2)若平面與底面所成銳二面角為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自從新型冠狀病毒爆發(fā)以來,全國范圍內(nèi)采取了積極的措施進(jìn)行防控,并及時(shí)通報(bào)各項(xiàng)數(shù)據(jù)以便公眾了解情況,做好防護(hù).以下是湖南省2020年1月23日-31日這9天的新增確診人數(shù).
日期 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
時(shí)間 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
新增確診人數(shù) | 15 | 19 | 26 | 31 | 43 | 78 | 56 | 55 | 57 |
經(jīng)過醫(yī)學(xué)研究,發(fā)現(xiàn)新型冠狀病毒極易傳染,一個(gè)病毒的攜帶者在病情發(fā)作之前通常有長達(dá)14天的潛伏期,這個(gè)期間如果不采取防護(hù)措施,則感染者與一位健康者接觸時(shí)間超過15秒,就有可能傳染病毒.
(1)將1月23日作為第1天,連續(xù)9天的時(shí)間作為變量x,每天新增確診人數(shù)作為變量y,通過回歸分析,得到模型用于對疫情進(jìn)行分析.對上表的數(shù)據(jù)作初步處理,得到下面的一些統(tǒng)計(jì)量的值(部分?jǐn)?shù)據(jù)已作近似處理):,.根據(jù)相關(guān)數(shù)據(jù),求該模型的回歸方程(結(jié)果精確到0.1),并依據(jù)該模型預(yù)測第10天新增確診人數(shù).
(2)如果一位新型冠狀病毒的感染者傳染給他人的概率為0.3,在一次12人的家庭聚餐中,只有一位感染者參加了聚餐,記余下的人員中被感染的人數(shù)為,求最有可能(即概率最大)的值是多少.
附:對于一組數(shù)據(jù),…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com