9.化簡$\overrightarrow{OP}$+$\overrightarrow{PS}$-$\overrightarrow{QP}$+$\overrightarrow{SP}$=( 。
A.$\overrightarrow{QP}$B.$\overrightarrow{OQ}$C.$\overrightarrow{SP}$D.$\overrightarrow{SQ}$

分析 根據(jù)向量加法和數(shù)乘的幾何意義及向量加法的交換律便可進行化簡,從而找出正確選項.

解答 解:$\overrightarrow{OP}+\overrightarrow{PS}-\overrightarrow{QP}+\overrightarrow{SP}=\overrightarrow{OS}+\overrightarrow{PQ}+\overrightarrow{SP}$
=$\overrightarrow{OS}+\overrightarrow{SP}+\overrightarrow{PQ}$
=$\overrightarrow{OP}+\overrightarrow{PQ}$
=$\overrightarrow{OQ}$.
故選B.

點評 考查向量加法及數(shù)乘的幾何意義,以及向量加法的交換律.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)f(x)=2sin(2x+$\frac{π}{4}$)的周期、振幅、初相分別是( 。
A.$\frac{π}{4}$,2,$\frac{π}{4}$B.π,-2,-$\frac{π}{4}$C.π,2,$\frac{π}{4}$D.2π,2,$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知向量$\overrightarrow{a}$,$\overrightarrow$是夾角為60°的兩個單位向量,$\overrightarrow{c}$=$\overrightarrow{a}$$+λ\overrightarrow$,且$\overrightarrow{c}$$⊥\overrightarrow$.
(1)求實數(shù)λ的值;
(2)求向量$\overrightarrow{c}$的模|$\overrightarrow{c}$|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知f(x)=x2+x-1,求f(2x-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.計算下列函數(shù)的導數(shù):
(1)y=$\frac{lnx}{x}$+sinx
(2)y=x2+$\sqrt{x}$-ex•cosx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知$\frac{{{{({1-i})}^2}}}{1+i}$=a-i,則a=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知α為第二象限角,sinα+cosα=$\frac{1}{5}$,則cos2α=-$\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知等差數(shù)列{an}的首項a1=1,且公差d>0,它的第2項、第5項、第14項分別是等比數(shù)列{bn}的第2、3、4項.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)令dn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{dn}的前n項和Sn
(3)設(shè)數(shù)列{cn}對任意正整數(shù)n均有$\frac{{c}_{1}}{_{1}}$+$\frac{{c}_{2}}{_{2}}$+…+$\frac{{c}_{n}}{_{n}}$=an+1成立,求a1c1+a2c2+…+ancn的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知($\root{4}{x}$+$\sqrt{{x}^{3}}$)n展開式中的倒數(shù)第三項的系數(shù)為45.求:
(1)含x5的項;
(2)系數(shù)最大的項.

查看答案和解析>>

同步練習冊答案