7.函數(shù)y=$\sqrt{tanx-\sqrt{3}}$的定義域[kπ+$\frac{π}{3}$,kπ+$\frac{π}{2}$),k∈Z.

分析 根據(jù)函數(shù)成立的條件即可求函數(shù)的定義域.

解答 解:要使函數(shù)有意義,則tanx-$\sqrt{3}$≥0,即tanx≥$\sqrt{3}$,即kπ+$\frac{π}{3}$≤x<kπ+$\frac{π}{2}$,k∈Z,
即函數(shù)的定義域為[kπ+$\frac{π}{3}$,kπ+$\frac{π}{2}$),k∈Z,
故答案為:[kπ+$\frac{π}{3}$,kπ+$\frac{π}{2}$),k∈Z

點評 本題主要考查函數(shù)的定義域的求解,要求熟練掌握常見函數(shù)成立的條件.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.在平面直角坐標系xOy中,設銳角α的始邊與x軸的非負半軸重合,終邊與單位圓交于點P(x1,y1),將射線OP繞坐標原點O按逆時針方向旋轉$\frac{π}{2}$后與單位圓交于點Q(x2,y2).記f(α)=y1+y2
(1)求函數(shù)f(α)的值域;
(2)若f(C)=$\sqrt{2}$,求∠C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知y=f(x)是定義在R上的函數(shù),且f(2)=5,對任意的x都有f′(x)<$\frac{1}{2}$.則f(x)<$\frac{1}{2}$x+4的解集是(2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1=1,直線B1C與平面ABC成30°的角.
(1)求點C1到平面AB1C的距離;
(2)求二面角B-B1C-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)$y=cos(\frac{π}{4}-\frac{x}{3})$的最小正周期是( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.△ABC中,AB=6,AC=4,M為BC的中點,O為△ABC的外心,$\overrightarrow{AO}$•$\overrightarrow{AM}$=( 。
A.$\sqrt{13}$B.13C.5D.2$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.定義在R上的函數(shù)f(x)滿足:對任意x∈R,都有f(-x)=f(x),f(4-x)=f(x)成立,且已知x∈(-1,3]時,f(x)=$\left\{\begin{array}{l}{cos(\frac{π}{2}x),x∈(-1,1]}\\{1-|x-2|,x∈(1,3]}\end{array}\right.$,則函數(shù)g(x)=4f(x)-|x|的零點個數(shù)共為(  )
A.12個B.10個C.8個D.6個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知等差數(shù)列{an}中,a1>0,公差d>0,
(Ⅰ)已知a1=1,d=2,且$\frac{1}{a_1^2}$,$\frac{1}{a_4^2}$,$\frac{1}{a_m^2}$成等比數(shù)列,求正整數(shù)m的值;
(Ⅱ)求證:對任意n∈N*,$\frac{1}{a_n}$,$\frac{1}{{{a_{n+1}}}}$,$\frac{1}{{{a_{n+2}}}}$都不成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在△ABC中,c=4,a=2,C=45°,則sinA=$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

同步練習冊答案