15.在平面直角坐標(biāo)系xOy中,設(shè)銳角α的始邊與x軸的非負(fù)半軸重合,終邊與單位圓交于點(diǎn)P(x1,y1),將射線OP繞坐標(biāo)原點(diǎn)O按逆時針方向旋轉(zhuǎn)$\frac{π}{2}$后與單位圓交于點(diǎn)Q(x2,y2).記f(α)=y1+y2
(1)求函數(shù)f(α)的值域;
(2)若f(C)=$\sqrt{2}$,求∠C.

分析 (1)根據(jù)三角函數(shù)的定義求出函數(shù)f(α)的表達(dá)式,即可求出處函數(shù)的值域;
(2)若f(C)=$\sqrt{2}$,則f(C)═$\sqrt{2}$sin(C+$\frac{π}{4}$)=,即可得到結(jié)論.

解答 解:(1)由三角函數(shù)定義知,y1=sinα,y2=sin(α+$\frac{π}{2}$)=cosα,
f(α)=y1+y2=cosα+sinα=$\sqrt{2}$sin(α+$\frac{π}{4}$),
∵角α為銳角,
∴$\frac{π}{4}$<α+$\frac{π}{4}$<$\frac{3π}{4}$,
∴<sin(α+$\frac{π}{4}$)≤1,
∴1<$\sqrt{2}$sin(α+$\frac{π}{4}$)≤$\sqrt{2}$,
則f(α)的取值范圍是(1,$\sqrt{2}$];
(Ⅱ)若f(C)=$\sqrt{2}$,則f(C)═$\sqrt{2}$sin(C+$\frac{π}{4}$)=$\sqrt{2}$,
即sin(C+$\frac{π}{4}$)=1,
則C=$\frac{π}{4}$.

點(diǎn)評 本題主要考查三角函數(shù)的定義以及三角恒等變換的運(yùn)用,根據(jù)條件求出函數(shù)的解析式是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.一元二次不等式x2+ax+b>0的解集為x∈(-∞,-3)∪(1,+∞),則不等式ax2+bx-2<0的解集為(  )
A.(-3,1)B.(-∞,-$\frac{1}{2}$)∪(2,+∞)C.(-$\frac{1}{2}$,2)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的長軸長為4,離心率為$\frac{{\sqrt{3}}}{2}$,右焦點(diǎn)為F(c,0).
(1)求橢圓C的方程;
(2)直線l與直線x=2交于點(diǎn)A,與直線x=-2交于點(diǎn)B,且$\overrightarrow{FA}$•$\overrightarrow{FB}$=0,判斷并證明直線l與橢圓有多少個交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F2(3,0),離心率為e.
(1)若e=$\frac{\sqrt{3}}{2}$,求橢圓的方程;
(2)若直線與橢圓y=kx交于A,B兩點(diǎn),M,N分別為線段AF2,BF2 中點(diǎn),若坐標(biāo)原點(diǎn)O在以MN為直徑的圓上,且$\frac{\sqrt{2}}{2}$<e<$\frac{\sqrt{3}}{2}$,求k2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知單位向量$\overrightarrow{a}$,$\overrightarrow$,則下列各式成立的是( 。
A.$\overrightarrow{a}$∥$\overrightarrow$B.$\overrightarrow{a}$⊥$\overrightarrow$C.$\overrightarrow{a}$=$\overrightarrow$D.|$\overrightarrow{a}$|=|$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)A、B分別是直線y=$\frac{{\sqrt{2}}}{2}$x和y=-$\frac{{\sqrt{2}}}{2}$x上的動點(diǎn),且|AB|=$\sqrt{2}$,設(shè)O為坐標(biāo)原點(diǎn),動點(diǎn)P滿足$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$.
(1)求點(diǎn)P的軌跡方程;
(2)過點(diǎn)($\sqrt{3}$,0)做兩條相互垂直的直線l1,l2,直線l1,l2與點(diǎn)P的軌跡相交弦分別為CD、EF,設(shè)CD、EF的弦中點(diǎn)分別為M、N,求證:直線MN恒過一個定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,在棱長為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為線段DD1,BD的中點(diǎn).
(1)求異面直線EF與BC所成的角的正切值.
(2)求三棱錐C-B1D1F的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合M=|x|$\frac{x}{x-1}$≤0|,N=|x|0<x<2|,則M∩N=( 。
A.{x|0≤x<2 }B.{x|0<x<2}C.{x|0≤x<l}D.{x|0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)y=$\sqrt{tanx-\sqrt{3}}$的定義域[kπ+$\frac{π}{3}$,kπ+$\frac{π}{2}$),k∈Z.

查看答案和解析>>

同步練習(xí)冊答案