19.設(shè)隨機(jī)變量X服從正態(tài)分布N(3,4),若P(X>a2-4)=P(X<6-3a),則實(shí)數(shù)a的值為( 。
A.-5或2B.-1或4C.-5或4D.-5或-1或2或4

分析 根據(jù)正態(tài)曲線關(guān)于x=3對稱,得到兩個(gè)概率相等的區(qū)間關(guān)于x=3對稱,得到關(guān)于a的方程,解方程即可.

解答 解:∵隨機(jī)變量ξ服從正態(tài)分布N(3,4),
∵P(X>a2-4)=P(X<6-3a),
∴a2-4+6-3a=6,
∴a2-3a-4=0,
∴a=-1或4,
故選:B.

點(diǎn)評 本題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,本題主要考查曲線關(guān)于x=3對稱,考查關(guān)于直線對稱的點(diǎn)的特點(diǎn),本題是一個(gè)基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在等差數(shù)列{an}中,已知第10項(xiàng)等于17,前10項(xiàng)的和等于80.從該數(shù)列中依次取出第3項(xiàng)、第32項(xiàng)…第3n項(xiàng),并按原來的順序組成一個(gè)新數(shù)列{bn}.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.應(yīng)用簡單隨機(jī)抽樣,從n個(gè)個(gè)體中抽取一個(gè)容量為10的樣本.若第二次抽取時(shí),余下的每個(gè)個(gè)體被抽到的概率為$\frac{1}{3}$,則在整個(gè)抽樣過程中,每個(gè)個(gè)體被抽到的概率為$\frac{5}{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若隨機(jī)變量X的概率分布如表,則表中a的值為(  )
X1234
P0.20.30.4a
A.1B.0.1C.0.3D.0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某公司的兩個(gè)部門招聘工作人員,應(yīng)聘者從 T1、T2兩組試題中選擇一組參加測試,成績合格者可簽約.甲、乙、丙、丁四人參加應(yīng)聘考試,其中甲、乙兩人選擇使用試題 T1,且表示只要成績合格就簽約;丙、丁兩人選擇使用試題 T2,并約定:兩人成績都合格就一同簽約,否則兩人都不簽約.已知甲、乙考試合格的概率都是$\frac{1}{2}$,丙、丁考試合格的概率都是$\frac{2}{3}$,且考試是否合格互不影響.
(I)求丙、丁未簽約的概率;
(II)記簽約人數(shù)為 X,求 X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)是定義域?yàn)镽的偶函數(shù),且f(x+2)=f(x),若f(x)在[-1,0]上是減函數(shù),記a=f(log0.52),b=f(log24),c=f(20.5),則( 。
A.a>b>cB.b>c>aC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.將正弦曲線y=sinx的縱坐標(biāo)y伸長到原來的3倍,橫坐標(biāo)不變,得到的曲線是y=3sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=2x+loga(x+1)+3恒過定點(diǎn)為( 。
A.(0,3)B.(0,4)C.$(-1,\frac{7}{2})$D.(-1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ln(ex+a)(a為常數(shù))是R上的奇函數(shù).
(1)求函數(shù)h(x)=xe2f(x)的單調(diào)增區(qū)間;
(2)若函數(shù)g(x)=(λ+a)x-cosx(x∈[$\frac{π}{3}$,$\frac{2π}{3}$])是減函數(shù),且對任意實(shí)數(shù)λ都滿足g(x)≤λt-1,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案