12.已知某8個數(shù)據(jù)的平均數(shù)為5,方差為3,現(xiàn)又加入一個新數(shù)據(jù)5,此時這9個數(shù)的平均數(shù)為$\overline{x}$,方差為s2,則( 。
A.$\overline{x}$=5,s2>3B.$\overline{x}$=5,s2<3C.$\overline{x}$>5,s2<3D.$\overline{x}$>5,s2>3

分析 利用平均數(shù)、方差的定義直接求解.

解答 解:∵某8個數(shù)據(jù)的平均數(shù)為5,方差為3,現(xiàn)又加入一個新數(shù)據(jù)5,
此時這9個數(shù)的平均數(shù)為$\overline{x}$,方差為s2,
∴$\overline{x}$=$\frac{8×5+5}{9}$=5,${S}^{2}=\frac{8×3+(5-5)^{2}}{9}$=$\frac{8}{3}$<3.
故選:B.

點評 本題考查平均數(shù)、方差的求法,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.隨機變量X~B(n,$\frac{1}{4}$),E(X)=3,則n=( 。
A.8B.12C.16D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是增函數(shù)的是( 。
A.y=x3+xB.y=-$\frac{1}{x}$C.y=sinxD.$y={({\frac{1}{2}})^x}-{2^x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.不等式x2-3x-10>0的解集是( 。
A.{x|-2≤x≤5}B.{x|x≥5或x≤-2}C.{x|-2<x<5}D.{x|x>5或x<-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知平面向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2.
(1)若$\overrightarrow{a}$與$\overrightarrow$的夾角θ=120°,求|$\overrightarrow{a}$+$\overrightarrow$|的值;
(2)若(k$\overrightarrow{a}$+$\overrightarrow$)⊥(k$\overrightarrow{a}$-$\overrightarrow$),求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖是市兒童樂園里一塊平行四邊形草地ABCD,樂園管理處準(zhǔn)備過線段AB上一點E設(shè)計一條直線EF(點F在邊BC或CD上,不計路的寬度),將該草地分為面積之比為2:1的左、右兩部分,分別種植不同的花卉.經(jīng)測量得AB=18m,BC=10m,∠ABC=120°.設(shè)EB=x,EF=y(單位:m).
(1)當(dāng)點F與C重合時,試確定點E的位置;
(2)求y關(guān)于x的函數(shù)關(guān)系式;
(3)請確定點E、F的位置,使直路EF長度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=ex,g(x)=$\frac{1}{2}$x2+x+1,則與f(x),g(x)的圖象均相切的直線方程是y=x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,梯形ABEF中,AF∥BE,AB⊥AF,且AB=BC=AD=DF=2CE=2,沿DC將梯形DCFE折起,使得平面DCFE⊥平面ABCD.
(1)證明:AC∥平面BEF;
(2)求三棱錐D-BEF的體積;
(3)求直線AF與平面BDF所求的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知$a=ln\frac{1}{2012}-\frac{1}{2012},b=ln\frac{1}{2013}-\frac{1}{2013},c=ln\frac{1}{2014}-\frac{1}{2014}$,則( 。
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

同步練習(xí)冊答案