6.函數(shù)f(x)=$\frac{lg({x}^{2}-1)}{\sqrt{{x}^{2}-x-2}}$的定義域為( 。
A.(-∞,-2)∪(1,+∞)B.(-2,1)C.(-∞,-1)∪(2,+∞)D.(1,2)

分析 根據(jù)函數(shù)f(x)的解析式,列出不等式組求出解集即可.

解答 解:函數(shù)f(x)=$\frac{lg({x}^{2}-1)}{\sqrt{{x}^{2}-x-2}}$,
∴$\left\{\begin{array}{l}{{x}^{2}-1>0}\\{{x}^{2}-x-2>0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x<-1或x>1}\\{x<-1或x>2}\end{array}\right.$,
即x<-1或x>2;
∴f(x)的定義域為(-∞,-1)∪(2,+∞).
故選:C.

點評 本題考查了根據(jù)函數(shù)解析式求定義域的應(yīng)用問題,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.函數(shù)f(x)=x3-ax-1.
(1)當a=8時,求函數(shù)f(x)在x=0處的切線方程.
(2)討論f(x)=x3-ax-1的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.用與球心距離為1的平面去截球所得的截面面積為π,則球的表面積為(  )
A.B.C.D.$\frac{8}{3}π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.(1)已知α,β都是銳角,cosα=$\frac{4}{5}$,cos(α+β)=-$\frac{5}{13}$,求cosβ的值.
(2)若cos($\frac{π}{4}$-α)=$\frac{4}{5}$,α∈(0,$\frac{π}{4}$),求cosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.秦九韶算法是南宋時期數(shù)學家秦九韶提出的一種多項式簡化算法,即使在現(xiàn)代,它依然是利用計算機解決多項式問題的最優(yōu)算法,即使在現(xiàn)代,它依然是利用計算機解決多項式問題的最優(yōu)算法,其算法的程序框圖如圖所示,若輸入的a0,a1,a2,…,an分別為0,1,2,…,n,若n=5,根據(jù)該算法計算當x=2時多項式的值,則輸出的結(jié)果為(  )
A.248B.258C.268D.278

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=2lnx-$\frac{1}{2}$ax2-bx-1.
(1)當a=b=1時,求函數(shù)f(x)的最大值;
(2)當b=1,a≥0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當a=0,b=-4時,方程2m=$\frac{f(x)}{{x}^{2}}$有唯一實數(shù)根,求正實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.北京時間3月15日下午,谷歌圍棋人工智能AlphaGo與韓國棋手李世石進行最后一輪較量,AlphaGo獲得本場比賽勝利,最終人機大戰(zhàn)總比分定格在1:4.人機大戰(zhàn)也引發(fā)全民對圍棋的關(guān)注,某學校社團為調(diào)查學生學習圍棋的情況,隨機抽取了100名學生進行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學生日均學習圍棋時間的頻率分布直方圖(如圖所示),將日均學習圍棋時間不低于40分鐘的學生稱為“圍棋迷”.
非圍棋迷圍棋迷合計
301545
451055
合計7525100
(1)根據(jù)已知條件完成如圖列聯(lián)表,并據(jù)此資料判斷你是否有95%的把握認為“圍棋迷”與性別有關(guān)?
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量學生中,采用隨機抽樣方法每次抽取1名學生,抽取3次,記所抽取的3名學生中的“圍棋迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X)和方差D(X).
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(x2≥k00.050.010
k03.746.63

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖1所示,在邊長為4的菱形ABCD中,∠DAB=60°,點E,F(xiàn)分別是邊CD,CB的中點,EF∩AC=O,沿EF將△CEF翻折到△PEF,連接PA,PB,PD,得到如圖2所示五棱錐P-ABFED,且AP=$\sqrt{30}$,
(1)求證:BD⊥平面POA;
(2)求二面角B-AP-O的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.用輾轉(zhuǎn)相除法求240和288的最大公約數(shù)時,需要做2次除法;利用更相減損術(shù)求36和48的最大公約數(shù)時,需要進行3次減法.

查看答案和解析>>

同步練習冊答案