12.設(shè)θ∈R,則“|θ-$\frac{π}{12}$|<$\frac{π}{12}$”是“sinθ<$\frac{1}{2}$”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

分析 運(yùn)用絕對值不等式的解法和正弦函數(shù)的圖象和性質(zhì),化簡兩已知不等式,結(jié)合充分必要條件的定義,即可得到結(jié)論.

解答 解:|θ-$\frac{π}{12}$|<$\frac{π}{12}$?-$\frac{π}{12}$<θ-$\frac{π}{12}$<$\frac{π}{12}$?0<θ<$\frac{π}{6}$,
sinθ<$\frac{1}{2}$?-$\frac{7π}{6}$+2kπ<θ<$\frac{π}{6}$+2kπ,k∈Z,
則(0,$\frac{π}{6}$)?[-$\frac{7π}{6}$+2kπ,$\frac{π}{6}$+2kπ],k∈Z,
可得“|θ-$\frac{π}{12}$|<$\frac{π}{12}$”是“sinθ<$\frac{1}{2}$”的充分不必要條件.
故選:A.

點(diǎn)評 本題考查充分必要條件的判斷,同時考查正弦函數(shù)的圖象和性質(zhì),運(yùn)用定義法和正確解不等式是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,正方形ABCD的邊長為1,E,F(xiàn)是平面ABCD同一側(cè)的兩點(diǎn),AE∥FC,AE⊥AB,AE=1,DE=$\sqrt{2}$,F(xiàn)C=$\frac{1}{2}$.
(1)證明:CD⊥平面ADE;
(2)求三棱錐E-BDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.幾位大學(xué)生響應(yīng)國家的創(chuàng)業(yè)號召,開發(fā)了一款應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數(shù)學(xué)問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項(xiàng)是20,接下來的兩項(xiàng)是20,21,再接下來的三項(xiàng)是20,21,22,依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項(xiàng)和為2的整數(shù)冪.那么該款軟件的激活碼是(  )
A.440B.330C.220D.110

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$ 是互相垂直的單位向量,若$\sqrt{3}$$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$  與$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$的夾角為60°,則實(shí)數(shù)λ的值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在平面直角坐標(biāo)系xOy中,橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,焦距為2.
(Ⅰ)求橢圓E的方程.
(Ⅱ)如圖,動直線l:y=k1x-$\frac{\sqrt{3}}{2}$交橢圓E于A,B兩點(diǎn),C是橢圓E上的一點(diǎn),直線OC的斜率為k2,且k1k2=$\frac{\sqrt{2}}{4}$,M是線段OC延長線上一點(diǎn),且|MC|:|AB|=2:3,⊙M的半徑為|MC|,OS,OT是⊙M的兩條切線,切點(diǎn)分別為S,T,求∠SOT的最大值,并求取得最大值時直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知a∈R,i為虛數(shù)單位,若$\frac{a-i}{2+i}$為實(shí)數(shù),則a的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.從甲地到乙地要經(jīng)過3個十字路口,設(shè)各路口信號燈工作相互獨(dú)立,且在各路口遇到紅燈的概率分別為$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$.
(Ⅰ)設(shè)X表示一輛車從甲地到乙地遇到紅燈的個數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(Ⅱ)若有2輛車獨(dú)立地從甲地到乙地,求這2輛車共遇到1個紅燈的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)a,b∈R,|a|≤1.已知函數(shù)f(x)=x3-6x2-3a(a-4)x+b,g(x)=exf(x).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)已知函數(shù)y=g(x)和y=ex的圖象在公共點(diǎn)(x0,y0)處有相同的切線,
(i)求證:f(x)在x=x0處的導(dǎo)數(shù)等于0;
(ii)若關(guān)于x的不等式g(x)≤ex在區(qū)間[x0-1,x0+1]上恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(sinx)=-2x+1,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],那么f(cos10)=7π-19.

查看答案和解析>>

同步練習(xí)冊答案