7.集合M={x|mx2+x+2=0,x∈R}中至多只有一個(gè)元素,則實(shí)數(shù)m的取值范圍是{m|m≥$\frac{1}{8}$,或m=0}.

分析 根據(jù)題意便知方程mx2+x+2=0至多只有一個(gè)解,顯然需討論m:m=0時(shí),便可解出x=-2,符合方程有一個(gè)解;
而m≠0時(shí),方程便為一元二次方程,從而判別式△≥0,這樣解出m的范圍,并合并m=0便可得出m的取值范圍.

解答 解:①m=0時(shí),x+2=0,x=-2,所以A中元素只有一個(gè),滿足條件;
②若m≠0,A中元素至多有一個(gè);
∴一元二次方程mx2+x+2=0至多有一個(gè)解;
∴△=1-8m≤0;
∴m≥$\frac{1}{8}$;
∴綜上得m的取值范圍為:{m|m≥$\frac{1}{8}$,或m=0}.
故答案是:{m|m≥$\frac{1}{8}$,或m=0}.

點(diǎn)評(píng) 考查描述法表示集合,集合的元素的概念,以及一元二次方程至多一個(gè)解時(shí)判別式△的取值情況,不要漏了m=0的情況.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.不等式$\frac{(x-2)(x-3)}{{{x^2}+1}}<0$的解集是{x|2<x<3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.用數(shù)學(xué)歸納法證明:1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+3+…+n}$=$\frac{2n}{n+1}$時(shí),由n=k到n=k+1左邊需要添加的項(xiàng)是$\frac{2}{(k+1)(k+2)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.“x∈A或x∈B”是“x∈A∩B”的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知f(x)是一個(gè)定義在(0,+∞)上的函數(shù),當(dāng)x>1時(shí),f(x)>0,且對(duì)于(0,+∞)上的任意兩個(gè)實(shí)數(shù)a、b,有f(a)+f(b)=f(ab).
(1)求f(1)的值;
(2)求證:f(x)在(0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+4x,\;\;\;\;\;\;\;x≥0\\ 4x-{x^2},\;\;\;\;\;\;\;x<0\end{array}$,則不等式$f({\sqrt{x}})>f({2x})$的解集是{x|0<x<$\frac{1}{4}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{{x}^{2}+ax+b}{x}$(x≠0)是奇函數(shù),且滿足f(1)=f(4)
(1)求實(shí)數(shù)a,b的值;
(2)試證明函數(shù)f(x)在區(qū)間(0,2]上單調(diào)遞減;
(3)是否存在實(shí)數(shù)k同時(shí)滿足以下兩個(gè)條件:①不等式f(x)+$\frac{2k}{3}$>0對(duì)x∈(0,+∞)恒成立;②方程f(x)=k在x∈[-6,-1]上有解?若存在,試求出實(shí)數(shù)k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知集合A=$\left\{{x|{lgx}≤0}\right\},B=\left\{{x|\frac{1}{2}≤x≤3}\right\}$,則A∩B=( 。
A.(0,3]B.(1,2]C.(1,3]D.$[{\frac{1}{2},1}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率$e=\frac{{\sqrt{3}}}{2},A、B$,分別是橢圓的左、右頂點(diǎn),點(diǎn)P是橢圓上的一點(diǎn),直線PA、PB的傾斜角分別為α、β滿足tanα+tanβ=1,則直線PA的斜率為$\frac{{1±\sqrt{2}}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案