6.已知a、b都為集合{-2,0,1,3,4}中的元素,則函數(shù)f(x)=(a2-2)x+b為增函數(shù)的概率是( 。
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{3}{10}$

分析 基本事件總數(shù)為n=5×5=25,由函數(shù)f(x)=(a2-2)x+b為增函數(shù),知a2-2>0,由此能求出函數(shù)f(x)=(a2-2)x+b為增函數(shù)的概率.

解答 解:∵a、b都為集合{-2,0,1,3,4}中的元素,
∴基本事件總數(shù)為n=5×5=25,
∵函數(shù)f(x)=(a2-2)x+b為增函數(shù),
∴a2-2>0,
∴函數(shù)f(x)=(a2-2)x+b為增函數(shù)包含的基本事件個數(shù)m=3×5=15,
∴函數(shù)f(x)=(a2-2)x+b為增函數(shù)的概率p=$\frac{m}{n}=\frac{15}{25}=\frac{3}{5}$.
故選:B.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意一次函數(shù)的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知定義在R上的函數(shù)f(x)=x2+2ax+3在(-∞,1]上是減函數(shù),當(dāng)x∈[a+1,1]時,f(x)的最大值與最小值之差為g(a),則g(a)的最小值為(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.?dāng)?shù)列{an}的前n項和為Sn,Sn=2n+1-(n+1),等差數(shù)列{bn}的各項為正實數(shù),其前n項和為Tn,且T3=9,又a1+b1,a2+b2,a3+b3成等比數(shù)列.
(I)求數(shù)列{an}、{bn}的通項公式;
(2)若cn=anbn,當(dāng)n≥2時,求數(shù)列{cn}的前n項和An

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x+2)=x2-2x+3,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知a=x2+x+$\sqrt{2}$,b=lg3,$c={e^{-\frac{1}{2}}}$,則a,b,c的大小關(guān)系為( 。
A.a<b<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知角α的頂點與原點O重合,始邊與x軸的非負(fù)半軸重合,P(m,-2m)(m≠0)是角α終邊上的一點.則tan(α+$\frac{π}{4}$)的值為(  )
A.3B.$\frac{1}{3}$C.$-\frac{1}{3}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)求平行于直線3x+4y-12=0且與它的距離是7的直線l的方程;
(2)求經(jīng)過兩條直線l1:3x+4y-2=0與l2:2x+y+2=0的交點P,且垂直于直線l3:x-2y-1=0直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知命題p:?x0∈[0,2],log2(x0+2)<2m;命題q:關(guān)于x的方程3x2-2x+m2=0有兩個相異實數(shù)根.
(1)若(¬p)∧q為真命題,求實數(shù)m的取值范圍;
(2)若p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=ex-2ax與g(x)=-x3+ax2-(2a+1)x的圖象不存在相互平行或重合的切線,則實數(shù)a的取值范圍[$-\sqrt{3}$,$\sqrt{3}$].

查看答案和解析>>

同步練習(xí)冊答案