如圖所示的三個圖中,上面的是一個長方體截去一個角所得多面體的直觀圖,它的正視圖和側(cè)視圖在下面畫出(單位:cm).
 
(1)按照畫三視圖的要求畫出該多面體的俯視圖;
(2)在所給直觀圖中連接BC′,求證:BC′∥面EFG.

(1)見解析;(2)見解析.

解析試題分析:(1)根據(jù)幾何體的結(jié)構(gòu)特征與它的正(主)視圖和側(cè)(左)視圖可得其側(cè)視圖.
(2)由原題可得:點(diǎn)、分別是正方形的中點(diǎn),取′與的中點(diǎn)分別為、,所以,即可得到,根據(jù)線面平行的判斷定理可得線面平行.
試題解析:(1)如圖,俯視圖

(2)證明:由多面體的側(cè)(左)視圖可得:點(diǎn)、分別是正方形的中點(diǎn),
′與的中點(diǎn)分別為,
所以
根據(jù)幾何體的結(jié)構(gòu)特征可得:,
所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4d/d/1spvv3.png" style="vertical-align:middle;" />平面,平面
所以平面
考點(diǎn):1.三視圖;2.直線與平面平行的判定.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形ABCD為矩形,四邊形ADEF為梯形,AD//FE,∠AFE=60º,且平面ABCD⊥平面ADEF,AF=FE=AB==2,點(diǎn)G為AC的中點(diǎn).

(Ⅰ)求證:EG//平面ABF;
(Ⅱ)求三棱錐B-AEG的體積;
(Ⅲ)試判斷平面BAE與平面DCE是否垂直?若垂直,請證明;若不垂直,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是以為直徑的半圓上異于點(diǎn)的點(diǎn),矩形所在的平面垂直于該半圓所在平面,且

(Ⅰ)求證:;
(Ⅱ)設(shè)平面與半圓弧的另一個交點(diǎn)為,
①求證://;
②若,求三棱錐E-ADF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在四棱錐中,底面是正方形,側(cè)面是正三角形,平面底面

(Ⅰ)如果為線段VC的中點(diǎn),求證:平面
(Ⅱ)如果正方形的邊長為2, 求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直四棱柱ABCD–A1B1C1D1中,AB//CD,AD⊥AB,AB=2,AD=,AA1=3,E為CD上一點(diǎn),DE=1,EC=3

(1)證明:BE⊥平面BB1C1C;
(2)求點(diǎn)到平面EA1C1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在如圖所示的幾何體中,四邊形是正方形,平面,,分別為的中點(diǎn),且.

(Ⅰ)求證:平面平面;
(Ⅱ)求三棱錐與四棱錐的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在空間幾何體中,平面,平面平面,,

(I)求證:平面;
(II)如果平面,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知幾何體A—BCED的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.
(1)求此幾何體的體積V的大小;
(2)求異面直線DE與AB所成角的余弦值;
(3)試探究在DE上是否存在點(diǎn)Q,使得AQBQ并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,圓錐中,為底面圓的兩條直徑 ,AB交CD于O,且,的中點(diǎn).

(1)求證:平面;
(2)求圓錐的表面積;求圓錐的體積。
(3)求異面直線所成角的正切值 .

查看答案和解析>>

同步練習(xí)冊答案