某制造商3月生產(chǎn)了一批乒乓球,隨機抽取100個進行檢查,測得每個球的直徑(單位:mm),將數(shù)據(jù)分組如下表:
分組 頻數(shù) 頻率
[39.95,39.97) 10
[39.97,39.99) 20
[39.99,40.01) 50
[40.01,40.03] 20
合計 100
(1)請在上表中補充完成頻率分布表 (結(jié)果保留兩位小數(shù)),并在上圖中畫出頻率分布直方圖;     
(2)若以上述頻率作為概率,已知標準乒乓球的直徑為40.00mm,試求這批乒乓球的直徑誤差不超過0.03mm的概率;
(3)(僅文科生做)據(jù)直方圖估計這批乒乓球直徑的眾數(shù);
(4)(僅理科生做)據(jù)直方圖估計這批乒乓球直徑的中位數(shù)和平均數(shù)(結(jié)果保留三位小數(shù)).
考點:頻率分布直方圖,頻率分布表,眾數(shù)、中位數(shù)、平均數(shù)
專題:概率與統(tǒng)計
分析:(1)根據(jù)所給的頻數(shù)和樣本容量,用頻數(shù)除以樣本容量做出每一組數(shù)據(jù)對應(yīng)的頻率,填入表中,畫出對應(yīng)的頻率分步直方圖;
(2)誤差不超過0.03mm,即直徑落在[39.97,40.03]范圍內(nèi),將直徑落在[39.97,40.03]范圍內(nèi)的頻率求和即可得到所求;
(3)根據(jù)眾數(shù)是頻率分布直方圖中最高矩形的底邊中點的橫坐標可求出所求;
(4)做出每一組數(shù)據(jù)的區(qū)間的中點值,用這組數(shù)據(jù)的中間值分別乘以對應(yīng)的這個區(qū)間的頻率,得到這組數(shù)據(jù)的總體平均值,中位數(shù)出現(xiàn)在概率是0.5的地方.
解答: 解:(1)頻率分布表如下:
分組 頻數(shù) 頻率
[39.95,39.97) 10 0.10
[39.97,39.99) 20 0.20
[39.99,40.01) 50 0.50
[40.01,40.03) 20 0.20
合計 100 1
頻率分布直方圖如下:

(2)誤差不超過0.03mm,即直徑落在[39.97,40.03]范圍內(nèi),其概率為0.2+0.5+0.2=0.9,
(3)(文科)數(shù)據(jù)的眾數(shù)是40.00 (mm),
(4)(理科)數(shù)據(jù)的中位數(shù)為39.990+0.2/25=39.998(mm),
平均數(shù)約為39.96×0.10+39.98×0.20+40.00×0.50+40.02×0.20=39.996(mm).
點評:本題考查了統(tǒng)計中的莖葉圖,眾數(shù)、中位數(shù)、平均數(shù)等基本概念.眾數(shù)是指在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的一個數(shù),中位數(shù)是指將數(shù)據(jù)從小到大排列,處于中間位置的數(shù),如果中間位置有兩個數(shù),則取這兩個數(shù)的平均值.頻率分布直方圖中小長方形的面積=組距×=頻率,各個矩形面積之和等于1,能根據(jù)直方圖求頻率.屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖中三個直角三角形是一個體積為20的幾何體的三視圖,則h=( 。
A、6B、8C、4D、12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=ax2+bx+c(a≠0),f′(x)=2x+2.且方程f(x)=0有兩個相等的實根.
(1)求y=f(x)的表達式;
(2)求y=f(x)的圖象與兩坐標軸所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x∈[0,log23•log34],試求函數(shù)y=(
1
4
)x-(
1
2
)x+2
的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從10個事件中任取一個事件,若這個事件是必然事件的概率為0.2,是不可能事件的概率為0.3,則這10個事件中隨機事件的個數(shù)是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a
a2-1
(ax-a-x)
,(a>0,a≠1)
(1)判斷并證明f(x)的單調(diào)性;
(2)若當x∈(-∞,2)時,f(x)-4<0恒成立,求a得取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)關(guān)于x的方程2x+2-4x-b=0.
(Ⅰ) 如果b=1,求實數(shù)x的值;
(Ⅱ) 如果2x≤16且log2x≥0,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓G:
x2
4
+y2
=1,過點(m,0)作圓x2+y2=1的切線L交橢圓G于A,B兩點.
(1)求橢圓G的焦點坐標和離心率;
(2)求m的取值范圍;
(3)將|AB|表示為m的函數(shù),并求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某農(nóng)戶計劃種植黃瓜和韭菜,種植面積不超過50畝,投入資金54萬元,佛山市種植黃瓜和韭菜的產(chǎn)量,成本和售價如下:
   年產(chǎn)量畝  年種植成本  每噸售價
 黃瓜  4噸 1.2萬元   0.55萬元
 韭菜  6噸  0.9萬元  0.3萬元
為使一年的種植總利潤(總利潤=總銷售收入-總種植成本)最大,那么黃瓜種植面積應(yīng)為
 
畝.

查看答案和解析>>

同步練習冊答案