已知
a
=(1,-2),
b
=(-1,4k),且
a
b
,則k=( 。
A、
1
2
B、-
1
2
C、
1
8
D、-
1
8
考點:平面向量共線(平行)的坐標表示
專題:平面向量及應用
分析:根據(jù)兩向量平行的坐標表示,列出方程,求出k的值即可.
解答: 解:∵
a
=(1,-2),
b
=(-1,4k),且
a
b
,
∴1•4k-(-1)•(-2)=0;
解得k=
1
2

故選:A.
點評:本題考查了用坐標表示平面向量平行的應用問題,是基礎題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設命題p:關于x的方程3x2+2mx+m+
4
3
=0有兩個不等實數(shù)根,命題q:方程
x2
m-1
+
y2
5-m
=1表示雙曲線,若“p或q”為真命題,“p且q”為假命題,則實數(shù)m的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若向量
a
=(1,-1,2),
b
=(2,-1,2),則
a
b
的夾角的余弦值
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x+
1
x
(x>0)的最小值是( 。
A、1B、2C、-2D、以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=2an;數(shù)列{bn}滿足b1=3,b2=6,且{bn-an}為等差數(shù)列.
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
2x2+1
x
-2x的導數(shù)是(  )
A、2-
1
x2
B、-
1
x2
C、x-
1
x2
D、
1
x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1=2sinθ-
3
i,z2=1+(2cosθ)i,θ∈[0,π].
(1)若z1•z2∈R,求角θ;
(2)復數(shù)z1,z2對應的向量分別是
OZ1
,
OZ2
,其中O為坐標原點,求
OZ1
OZ2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若sinx+siny=1,則cosx+cosy的取值范圍是( 。
A、[-2,2]
B、[-1,1]
C、[0,
3
]
D、[-
3
,
3
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)1-i的虛部的平方是
 

查看答案和解析>>

同步練習冊答案