2.若“?x∈[0,$\frac{π}{4}$],tanx≤m”是真命題,則實(shí)數(shù)m的范圍是(  )
A.[1,+∞)B.[0,+∞)C.(1,+∞)D.(0,+∞)

分析 求出x∈[0,$\frac{π}{4}$]時(shí),tanx的值域,進(jìn)而根據(jù)“?x∈[0,$\frac{π}{4}$],tanx≤m”是真命題,可得實(shí)數(shù)m的范圍.

解答 解:當(dāng)x∈[0,$\frac{π}{4}$]時(shí),tanx∈[0,1],
若“?x∈[0,$\frac{π}{4}$],tanx≤m”是真命題,
則m∈[0,+∞),
故選:B.

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了三角函數(shù)的圖象和性質(zhì),存在性問(wèn)題,特稱(chēng)命題等知識(shí)點(diǎn),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知{an}為等差數(shù)列,且a3=-6,a6=0.等比數(shù)列{bn}滿(mǎn)足b1=-8,b2=a1+a2+a3,則{bn}的前n項(xiàng)和Sn=4(1-3n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=x2-4|x|+3,x∈R.
(1)判斷函數(shù)的奇偶性并將函數(shù)寫(xiě)成分段函數(shù)的形式;
(2)畫(huà)出函數(shù)的圖象;
(3)根據(jù)圖象寫(xiě)出它的單調(diào)區(qū)間及值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)函數(shù)f(x)=ln(x+1)+a(x2-x)+5,其中a∈R.
(1)當(dāng)a∈[-1,1]時(shí),f'(x)≥0恒成立,求x的取值范圍;
(2)討論函數(shù)f(x)的極值點(diǎn)的個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知一組正數(shù)x1,x2,x3,x4的方差為s2=$\frac{1}{4}$(x12+x22+x32+x42-16),則數(shù)據(jù)x1+3,x2+3,x3+3,x4+3的平均數(shù)為(  )
A.7B.6C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知定義在實(shí)數(shù)集R上的函數(shù)f(x)滿(mǎn)足f(2)=9,且f(x)的導(dǎo)函數(shù)滿(mǎn)足f'(x)<4,則不等式f(lnx)>4lnx+1的解集為(  )
A.(1,+∞)B.(e2,+∞)C.(-∞,e2D.(0,e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知正三棱柱ABC-A1B1C1,AB=2,AA1=3,點(diǎn)D是B1C1的中點(diǎn),則AD與平面ABC所成的角為( 。
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖所示,墻上掛有一塊邊長(zhǎng)為π的正方形木板,上面畫(huà)有正弦曲線(xiàn)半個(gè)周期的圖案(陰影部分).某人向此板投鏢,假設(shè)每次都能擊中木板并且擊中木板上每個(gè)點(diǎn)的可能性都一樣,則他擊中陰影部分的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{2}{π^2}$D.$\frac{1}{2π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在下列函數(shù)中,為偶函數(shù)的是( 。
A.y=lgxB.y=x2C.y=x3D.y=x+1

查看答案和解析>>

同步練習(xí)冊(cè)答案