分析 設(shè)f(x)=x+$\frac{1}{x}$,求出單調(diào)區(qū)間,可得f(x)在x≥2時(shí)遞增,可得f(x)在x=2處取得最小值,進(jìn)而得到所求最大值.
解答 解:由f(x)=x+$\frac{1}{x}$的導(dǎo)數(shù)為f′(x)=1-$\frac{1}{{x}^{2}}$,
可得當(dāng)x≥1或x≤-1時(shí),f′(x)≥0;
當(dāng)-1<x<0或0<x<1時(shí),f′(x)<0,
即有f(x)在x≥2時(shí)遞增,
f(x)在x=2處取得最小值$\frac{5}{2}$;
則函數(shù)$y=4-x-\frac{1}{x}(x≥2)$的最大值是4-$\frac{5}{2}$=$\frac{3}{2}$.
故答案為:$\frac{3}{2}$.
點(diǎn)評(píng) 本題考查函數(shù)的最值的求法,注意運(yùn)用函數(shù)的單調(diào)性,考查運(yùn)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{4π}{3}$ | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{{n^2}-n+6}}{2}$ | B. | $\frac{{{n^2}-n+6}}{3}$ | C. | $\frac{{{n^2}-2n+10}}{2}$ | D. | $\frac{{{n^2}+3n+6}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①② | B. | ①④ | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com