5.在復(fù)平面內(nèi),復(fù)數(shù)($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2所對應(yīng)的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運算法則、幾何意義即可得出.

解答 解:復(fù)數(shù)($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2=$\frac{1}{4}-\frac{3}{4}$+$\frac{\sqrt{3}}{2}$i=$-\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i對應(yīng)的點($-\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)位于第二象限.
故選:B.

點評 本題考查了復(fù)數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.過點P(2,1),以-3為斜率的直線方程為3x+y-7=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知圓C的圓心在直線3x+y-1=0上,且x軸,y軸被圓C截得的弦長分別為2$\sqrt{5}$,4$\sqrt{2}$,若圓心C位于第四象限
(1)求圓C的方程;
(2)設(shè)x軸被圓C截得的弦AB的中心為N,動點P在圓C內(nèi)且P的坐標(biāo)滿足關(guān)系式(x-1)2-y2=$\frac{5}{2}$,求$\overrightarrow{PA}$$•\overrightarrow{PB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.?dāng)?shù)列{an}滿足an+1=$\frac{1}{{a}_{n}+1}$,a1=1,則$\frac{{a}_{4}}{{a}_{5}}$=( 。
A.$\frac{9}{10}$B.$\frac{3}{8}$C.$\frac{25}{24}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知命題p:“?x∈R,?m∈R,使4x+2x•m+1=0”.若命題p為真命題,則實數(shù)m的取值范圍是(-∞,-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.拋物線y2=2px的焦點為F,M為拋物線上一點,若△OFM的外接圓與拋物線的準(zhǔn)線相切(O為坐標(biāo)原點),且外接圓的面積為9π,則p=( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=$\frac{1}{3}$x3-ax在R上是增函數(shù),則實數(shù)a的取值范圍是( 。
A.a≥0B.a≤0C.a>0D.a<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知命題p:“x<0”是“x+1<0”的充分不必要條件,命題q:“?x0∈R,x02-x0>0”的否定是“?x∈R,x2-x≤0”,則下列命題是真命題的是(  )
A.p∨(¬q)B.p∧qC.p∨qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的前n項和為Sn,點$(n,\frac{{S}_{n}}{n})$在直線y=$\frac{1}{2}x+\frac{11}{2}$上,數(shù)列{bn}為等差數(shù)列,且b3=11,前9項和為153.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)設(shè)cn=$\frac{3}{(2{a}_{n}-11)(2_{n}-1)}$,數(shù)列{cn}的前n項和為Tn,求使不等式Tn>$\frac{k}{57}$對一切的n∈N*都成立的最大整數(shù)k.

查看答案和解析>>

同步練習(xí)冊答案