14.已知命題p:“x<0”是“x+1<0”的充分不必要條件,命題q:“?x0∈R,x02-x0>0”的否定是“?x∈R,x2-x≤0”,則下列命題是真命題的是(  )
A.p∨(¬q)B.p∧qC.p∨qD.(¬p)∧(¬q)

分析 命題p:由x+1<0,解得x<-1,即可判斷出“x<0”是“x+1<0”的必要不充分條件;利用全稱命題與特稱命題的關(guān)系即可判斷出命題q的真假.

解答 解:命題p:由x+1<0,解得x<-1,因此“x<0”是“x+1<0”的必要不充分條件,因此是假命題.
命題q:“?x0∈R,x02-x0>0”的否定是“?x∈R,x2-x≤0”,是真命題.
則下列命題是真命題的是p∨q.
故選:C.

點(diǎn)評(píng) 本題考查了簡易邏輯的判定方法、不等式的解法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.一個(gè)盒子里有7只好晶體管,3只壞晶體管,從盒子里先取一個(gè)晶體管,然后不放回的再從盒子里取出一個(gè)晶體管,若已知第1只是好的,則第2只是壞的概率為( 。
A.$\frac{3}{10}$B.$\frac{1}{3}$C.$\frac{7}{10}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在復(fù)平面內(nèi),復(fù)數(shù)($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2所對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若cos2α=$\frac{3}{5}$,則sin4α+cos4α的值是( 。
A.$\frac{17}{25}$B.$\frac{4}{5}$C.$\frac{6}{5}$D.$\frac{33}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知A,B,C為銳角△ABC的內(nèi)角,$\overrightarrow{a}$=(sinA,sinBsinC),$\overrightarrow$=(1,-2),$\overrightarrow{a}$⊥$\overrightarrow$.
(1)tanB,tanBtanC,tanC能否構(gòu)成等差數(shù)列?并證明你的結(jié)論;
(2)求tanAtanBtanC的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.集合{a,b,c}共有8個(gè)子集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)U=R,A={x|x≤2,或x≥5},B=$\{x|\frac{2x-5}{x+2}<1\}$,C={x|a<x<a+1}
(1)求A∪B和(∁UA)∩B
(2)若B∩C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知{an}為等比數(shù)列,且${a_1}{a_{13}}=\frac{π}{6}$,則tan(a2a12)的值為( 。
A.$\frac{{\sqrt{3}}}{3}$B.-$\sqrt{3}$C.$±\sqrt{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知M點(diǎn)的極坐標(biāo)為$(-2,-\frac{π}{6})$,則M點(diǎn)關(guān)于直線$θ=\frac{π}{2}$的對(duì)稱點(diǎn)坐標(biāo)為( 。
A.$(2,\frac{π}{6})$B.$(2,-\frac{π}{6})$C.$(-2,\frac{π}{6})$D.$(-2,\frac{11π}{6})$

查看答案和解析>>

同步練習(xí)冊(cè)答案