10.若方程($\frac{6}{5}$)x=$\frac{1+a}{1-a}$有負數(shù)解,求a的取值范圍(-1,0).

分析 由題意可得x<0,運用指數(shù)函數(shù)的單調(diào)性和值域,可得0<$\frac{1+a}{1-a}$<1,再由分式不等式的解法,即可得到所求a的范圍.

解答 解:方程($\frac{6}{5}$)x=$\frac{1+a}{1-a}$有負數(shù)解,
可得x<0,即有0<($\frac{6}{5}$)x<1,
即0<$\frac{1+a}{1-a}$<1,
由$\frac{1+a}{1-a}$>0,可得-1<a<1;
由$\frac{1+a}{1-a}$<1,即$\frac{2a}{1-a}$<0,
可得a>1或a<0,
綜上可得,a的范圍是-1<a<0.
故答案為:(-1,0).

點評 本題考查方程的根的存在性問題的解法,注意運用指數(shù)函數(shù)的單調(diào)性和值域,考查分式不等式的解法,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.定義集合A,B之間的運算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B},若A={1,2,3},B={1,2},則集合A*B中的最大元素為5,集合A*B的所有子集的個數(shù)為16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx-mx2,g(x)=$\frac{1}{2}$mx2+x,m∈R,令F(x)=f(x)+g(x).
(Ⅰ)當$m=\frac{1}{2}$時,求函數(shù)f(x)的單調(diào)區(qū)間及極值;
(Ⅱ)若關于x的不等式F(x)≤mx-1恒成立,求整數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=2x-a,g(x)=xex,若對任意x1∈[0,1]存在x2∈[-1,1],使f(x1)=g(x2)成立,則實數(shù)a的取值范圍為[2-e,$\frac{1}{e}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.2015年7月9日21時15分,臺風“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬人緊急轉(zhuǎn)移安置,5.6萬人緊急轉(zhuǎn)移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災,直接經(jīng)濟損失12.99億元,距離路率市222千米的梅州也受到了臺風的影響,適逢暑假,小明調(diào)查了梅州某小區(qū)的50戶居民由于臺風造成的經(jīng)濟損失,將收集的數(shù)據(jù)分成(0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出如圖頻率直方圖:
(1)試根據(jù)頻率分布直方圖估計小區(qū)平均每戶居民的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)小明向班級同學發(fā)出倡議,為該小區(qū)居民捐款,現(xiàn)從損失超過4000元的居民中隨機抽出2戶進行捐款救援,設抽出損失超過8000元的居民為ξ戶,求ξ的分布列和數(shù)學期望;
(3)臺風后區(qū)委會號召小區(qū)居民為臺風重災區(qū)捐款,小明調(diào)查的50戶居民捐款情況圖,根據(jù)圖表格中所給數(shù)據(jù),分別求b,c,a+b,c+d,a+c,b+d,a+b+c+d的值,并說明是否有95%以上的把握認為捐款數(shù)額多于或少于500元和自身經(jīng)濟損失是否到4000元有關?
 經(jīng)濟損失不超過4000元經(jīng)濟損失超過4000元合計
捐款超過500元a=30b 
捐款不超過500元cd=6 
合計   
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:臨界值表參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.為了研究色盲與性別的關系,調(diào)查了1000人,得到了如表的數(shù)據(jù),則( 。
合計
正常442514956
色盲38644
合計4805201000
A.99.9%的把握認為色盲與性別有關B.99%的把握認為色盲與性別有關
C.95%的把握認為色盲與性別有關D.90%的把握認為色盲與性別有關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.2015年10月29日夜里,全面放開二胎的消息一公布,迅速成為人們熱議的熱點,為此,某網(wǎng)站進行了一次民意調(diào)查,參與調(diào)查的網(wǎng)民中,年齡分布情況如圖所示:
(1)若以頻率代替概率,從參與調(diào)查的網(wǎng)民中隨機選取1人進行訪問,求其年齡恰好在[30,40)之間的概率;
(2)若從參與調(diào)查的網(wǎng)民中按照分層抽樣的方法選取100人,其中30歲以下計劃要二胎的有25人,年齡不低于30歲的計劃要二胎的有30人,請以30歲為分界線,以是否計劃要二胎的人數(shù)建立分類變量.
①填寫下列2×2列聯(lián)表:
計劃要二胎不計劃要二胎合計
30歲以下
不低于30歲
合計
②試分析是否有90%以上的把握認為計劃要二胎與年齡有關?
P(K2≥k00.150.100.05
k02.0722.7063.841
K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.把座位編小為1、2、3、4、5的五張電影票全部分給甲、乙、內(nèi)、丁四個人
(1)恰有一人沒有分到電影票的分法有多少種:
(2)每人至少一張,且分得的兩張票必須是連號,共有多少種不同的分法;
(3)甲、乙各分得一張電影票.且甲所得電影票的編號總大于乙所得電影票的編號,多少種不同的分法./

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.己知P是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上一點,F(xiàn)1、F2分別為左、右兩個焦點,∠F1PF2=60°,S${\;}_{△{F}_{1}P{F}_{2}}$=12$\sqrt{3}$,則b=6.

查看答案和解析>>

同步練習冊答案