19.過點P(2,1)且在x,y軸上的截距相等的直線方程為( 。
A.x-2y=0B.2x-y=0或x+y-3=0C.x+y-3=0D.x-2y=0或x+y-3=0

分析 當(dāng)直線經(jīng)過原點時,直線方程為:y=$\frac{1}{2}$x.當(dāng)直線不經(jīng)過原點時,設(shè)直線方程為:y+x=a,把點P(2,1)代入即可得出.

解答 解:當(dāng)直線經(jīng)過原點時,直線方程為:y=$\frac{1}{2}$x,即x-2y=0.
當(dāng)直線不經(jīng)過原點時,設(shè)直線方程為:y+x=a,把點P(2,1)代入可得:a=2+1=3.
∴直線方程為x+y-3=0.
綜上可得:要求的直線方程為:x-2y=0或x+y-3=0.
故選:D.

點評 本題考查了直線的截距式,考查了分類討論方法、推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,四棱錐P-ABCD的底面為平行四邊形,PD⊥平面ABCD,M為PC中點.   
(1)求證:AP∥平面MBD;
(2)若AD⊥PB,PD=CD,求直線MB和平面ABCD所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知tanα=7,求值.
(1)$\frac{sinα+cosα}{2sinα-cosα}$=$\frac{8}{13}$;
(2)sin2α+sinαcosα+3cos2α=$\frac{59}{50}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.曲線y=$\frac{{\sqrt{3}}}{3}$x3-$\sqrt{3}$x2+5在點(1,f(1))處的切線傾斜角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)求證:$\sqrt{2}$是無理數(shù).
(2)設(shè)a,b,c為一個三角形的三邊,且s2=2ab,這里s=$\frac{1}{2}$(a+b+c),試證:s<2a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知F1,F(xiàn)2為平面內(nèi)兩定點,|F1F2|=6,動點M滿足||MF1|-|MF2||=6,則M的軌跡是( 。
A.兩條射線B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.?dāng)?shù)字0,1,2,3,4可以組成( 。﹤無重復(fù)數(shù)字的五位數(shù).
A.96B.120C.625D.1024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.用一個“+”號和一個“-”號將數(shù)字 1,2,3連成算式,不同的運算結(jié)果共有( 。
A.12種B.6種C.4種D.3種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.將曲線C1:x2+y2=1上所有點的橫坐標伸長到原來的$\sqrt{2}$倍(縱坐標不變)得到曲線C2,A為C1與x軸正半軸的交點,直線l經(jīng)過點A且傾斜角為30°,記l與曲線C1的另一交點為B,與曲線C2在一、三象限的交點分別為C,D.
(1)寫出曲線C2的普通方程及直線l的參數(shù)方程;
(2)求|AC|-|BD|.

查看答案和解析>>

同步練習(xí)冊答案