19.若直線2ax-by+2=0(a,b∈R)始終平分圓x2+y2+2x-4y+1=0的周長,則ab的最大值是$\frac{1}{4}$.

分析 化圓的方程為標準式,求出圓心坐標,由題意可得直線過圓心,得到a+b=1,然后利用基本不等式求最值.

解答 解:化x2+y2+2x-4y+1=0為(x+1)2+(y-2)2=4.
∴圓心坐標為(-1,2),
∵直線2ax-by+2=0(a,b∈R)始終平分圓x2+y2+2x-4y+1=0的周長,
∴直線2ax-by+2=0過圓心,則-2a-2b+2=0,即a+b=1.
∴當a,b大于0時,且a=b,ab有最大值為$(\frac{a+b}{2})^{2}=(\frac{1}{2})^{2}=\frac{1}{4}$.
故答案為:$\frac{1}{4}$.

點評 本題考查直線與圓位置關系的應用,訓練了利用基本不等式求最值,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.如圖,正方形網(wǎng)格中,粗實線畫出的是某幾何體的三視圖,若該幾何體的體積為7,則該幾何體的表面積為(  )
A.18B.21C.24D.27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.福利彩票“雙色球”中紅色球的號碼由編號為01,02,…,33的33個個體組成,小明利用下面的隨機數(shù)表選取6組數(shù)作為6個紅色球的編號,選取方法是從隨機數(shù)表第1行的第7列數(shù)字開始由左到右依次讀取數(shù)據(jù),則選出來的第3個紅色球的編號為( 。
49 54 43 54 15 37 17 93 39 78 87 35 20 96 43 84 17 34 91 64
57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
A.06B.17C.20D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知$α∈(\frac{π}{3},π)$,且$sin(α+\frac{π}{6})=\frac{3}{5}$,則cosα=( 。
A.$\frac{{3-4\sqrt{3}}}{10}$B.$\frac{{3+4\sqrt{3}}}{10}$C.$\frac{{-3-4\sqrt{3}}}{10}$D.$\frac{{-3+4\sqrt{3}}}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=|2x-1|-|x-3|.
(Ⅰ)解不等式f(x)≥1;
(Ⅱ)當-9≤x≤4時,不等式f(x)<a成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.執(zhí)行如圖2所示的程序框圖,若輸出S=7,則輸入k(k∈N*)的值為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若復數(shù)(a+i)(1+i)在復平面上所對應的點在實軸上,則實數(shù)a=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.等差數(shù)列{an}中,|a3|=|a9|,公差d<0,則使前n項和Sn取得最大值的正整數(shù)n的值是5或6,使前n項和Sn>0的正整數(shù)n的最大值是10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{y≤-\frac{5}{2}x+9}\\{x≥2}\\{y≥-1}\end{array}\right.$,則z=$\frac{y+2}{x+2}$的最大值是$\frac{5}{2}$.

查看答案和解析>>

同步練習冊答案