【題目】已知函數(shù),其中為實數(shù).

1)當時,判斷函數(shù)在其定義域上的單調(diào)性;

2)是否存在實數(shù),使得對任意的恒成立?若不存在,請說明理由;若存在,求出的值并加以證明.

【答案】1上單調(diào)遞增(2)存在,,證明見解析

【解析】

1)求導(dǎo)得,,設(shè),由恒成立,即可得到本題答案;

2)當時,,則,求的最大值,可確定a的取值范圍;當時,,則,求的最小值,可確定a的取值范圍,綜上,即可得到本題答案.

1)當時,,

,.

時,,當時,.

,

恒成立,

時,恒成立.

恒成立,

上單調(diào)遞增.

2)①當時,,則,

,則

再令,則

故當時,,所以上單調(diào)遞減,

所以當時,,所以,

所以上單調(diào)遞增,,所以.

②當時,,則.

由①知當時,上單調(diào)遞增,當時,,

所以,所以上單調(diào)遞增,

所以,所以.

綜合①②得:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點分別在軸和軸上運動,且,若動點滿足.

1)求出動點的軌跡的標準方程;

2)設(shè)動直線與曲線有且僅有一個公共點,與圓相交于兩點(兩點均不在坐標軸上),求直線的斜率之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=2sinxxcosxx,f′x)為fx)的導(dǎo)數(shù).

1)證明:f′x)在區(qū)間(0,π)存在唯一零點;

2)若x[0π]時,fxax,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的極坐標方程是.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數(shù)方程是: (是參數(shù)).

(Ⅰ)將曲線C的極坐標方程化為直角坐標方程,將直線的參數(shù)方程化為普通方程;

(Ⅱ)若直線l與曲線C相交于A、B兩點,且,試求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的底面是正三角形,底面,M的中點.

1)求證:平面

2)若,且沿側(cè)棱展開三棱柱的側(cè)面,得到的側(cè)面展開圖的對角線長為,求作點在平面內(nèi)的射影H,請說明作法和理由,并求線段AH的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某手機廠商在銷售200萬臺某型號手機時開展“手機碎屏險”活動、活動規(guī)則如下:用戶購買該型號手機時可選購“手機碎屏險”,保費為元,若在購機后一年內(nèi)發(fā)生碎屏可免費更換一次屏幕.該手機廠商將在這萬臺該型號手機全部銷售完畢一年后,在購買碎屏險且購機后一年內(nèi)未發(fā)生碎屏的用戶中隨機抽取名,每名用戶贈送元的紅包,為了合理確定保費的值,該手機廠商進行了問卷調(diào)查,統(tǒng)計后得到下表(其中表示保費為元時愿意購買該“手機碎屏險”的用戶比例);

1)根據(jù)上面的數(shù)據(jù)求出關(guān)于的回歸直線方程;

2)通過大數(shù)據(jù)分析,在使用該型號手機的用戶中,購機后一年內(nèi)發(fā)生碎屏的比例為.已知更換一次該型號手機屏幕的費用為元,若該手機廠商要求在這次活動中因銷售該“手機碎屏險”產(chǎn)生的利潤不少于萬元,能否把保費定為5元?

x

10

20

30

40

50

y

0.79

0.59

0.38

0.23

0.01

參考公式:回歸方程中斜率和截距的最小二乘估計分別為,

,

參考數(shù)據(jù):表中5個值從左到右分別記為,相應(yīng)的值分別記為,經(jīng)計算有,其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】)恰有1個零點,則實數(shù)的取值范圍為(

A.B.C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),若以為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求曲線的普通方程與曲線的直角坐標方程;

2)若是曲線上的任意一點,是曲線上的任意一點,求線段的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為ab,c.已知

(Ⅰ)求的值;

(Ⅱ)若,△ABC的周長為7,求b

查看答案和解析>>

同步練習(xí)冊答案