分析 根據(jù)定積分的計(jì)算方法和求導(dǎo)法則得到(x+1)n+nx(x+1)n-1=a0+a1x+a2x2+…+anxn,再分別令x=1或x=0即可求出答案.
解答 解:${∫}_{0}^{x}$(a0+a1x+a2x2+…+anxn)dx=x(a0+$\frac{1}{2}$a1x+$\frac{1}{3}$a2x2+…+$\frac{1}{n+1}$anxn)=x(x+1)n,
∴x(x+1)n=a0x+$\frac{1}{2}$a1x2+$\frac{1}{3}$a2x3+…+$\frac{1}{n+1}$anxn+1,
兩邊求導(dǎo)可得(x+1)n+nx(x+1)n-1=a0+a1x+a2x2+…+anxn,
令x=1,則a0+a1+a2+…+an=2n+n•2n-1=(n+2)2n-1,
再令x=0,則a0=1,
∴a1+a2+…+an=(n+2)2n-1-1,
故答案為:(n+2)2n-1-1.
點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,在二項(xiàng)展開式中,通過給變量賦值,求得某些項(xiàng)的系數(shù)和,是一種簡(jiǎn)單有效的方法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 15 | C. | 31 | D. | 63 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-∞,-\frac{1}{3})$ | B. | $(-\frac{1}{3},+∞)$ | C. | (3,+∞) | D. | (-∞,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | φ=$\frac{2π}{3}$ | B. | x=$\frac{7π}{12}$+kπ,k∈Z為其所有對(duì)稱軸 | ||
C. | [$\frac{π}{12}$+$\frac{kπ}{2}$,$\frac{7π}{12}$+$\frac{kπ}{2}$],k∈Z為其減區(qū)間 | D. | f(x)向左移$\frac{π}{12}$可變?yōu)榕己瘮?shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{2}$-y2=1 | B. | x2-$\frac{{y}^{2}}{2}$=1 | C. | x2-$\frac{{y}^{2}}{3}$=1 | D. | $\frac{{x}^{2}}{3}$-y2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $16-\frac{2π}{3}$ | B. | $8-\frac{4π}{3}$ | C. | $16-\frac{4π}{3}$ | D. | $16(1-\frac{π}{3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2} | B. | {1,2,4} | C. | {2,4} | D. | {2,3,4} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com