12.已知函數(shù)f(x)=blnx.
(Ⅰ)當(dāng)b=1時(shí),若函數(shù)F(x)=f(x)+ax2-x在其定義域上為增函數(shù),求a的取值范圍;
(Ⅱ)若在[1,e]上存在x0,使得x0-f(x0)<-$\frac{1+b}{x_0}$成立,求b的取值范圍.

分析 (Ⅰ)求出函數(shù)F(x)的導(dǎo)數(shù),問(wèn)題轉(zhuǎn)化為2a≥$\frac{1}{x}$-$\frac{1}{{x}^{2}}$=-${(\frac{1}{x}-\frac{1}{2})}^{2}$+$\frac{1}{4}$在x∈(0,+∞)上恒成立,求出a的范圍即可;
(Ⅱ)設(shè)h(x)=x-blnx+$\frac{1+b}{x}$,問(wèn)題轉(zhuǎn)化為函數(shù)h(x)=x-blnx+$\frac{1+b}{x}$在[1,e]上的最小值小于零,通過(guò)討論b的范圍,求出h(x)的單調(diào)區(qū)間,從而進(jìn)一步確定b的范圍即可.

解答 解:(Ⅰ)b=1時(shí),F(xiàn)(x)=f(x)+ax2-x=lnx+ax2-x,x∈(0,+∞),
F′(x)=$\frac{1}{x}$+2ax-1≥0在x∈(0,+∞)恒成立,
則2a≥$\frac{1}{x}$-$\frac{1}{{x}^{2}}$=-${(\frac{1}{x}-\frac{1}{2})}^{2}$+$\frac{1}{4}$在x∈(0,+∞)上恒成立,
∴2a≥$\frac{1}{4}$,a≥$\frac{1}{8}$;
(Ⅱ)設(shè)h(x)=x-blnx+$\frac{1+b}{x}$,
若在[1,e]上存在x0,使得x0-f(x0)<-$\frac{1+b}{{x}_{0}}$,即x0-blnx0+$\frac{1+b}{{x}_{0}}$<0成立,
則只需要函數(shù)h(x)=x-blnx+$\frac{1+b}{x}$在[1,e]上的最小值小于零.
又h′(x)=1-$\frac{x}$-$\frac{1+b}{{x}^{2}}$=$\frac{(x+1)[x-(1+b)]}{{x}^{2}}$,
令h'(x)=0,得x=-1(舍去)或x=1+b.
①當(dāng)1+b≥e,即b≥e-1時(shí),h(x)在[1,e]上單調(diào)遞減,
故h(x)在[1,e]上的最小值為h(e),
由h(e)=e+$\frac{1+b}{e}$-b<0,可得b>$\frac{{e}^{2}+1}{e-1}$,
因?yàn)?$\frac{{e}^{2}+1}{e-1}$>e-1,所以b>$\frac{{e}^{2}+1}{e-1}$;
②當(dāng)1+b≤1,即b≤0時(shí),h(x)在[1,e]上單調(diào)遞增,
故h(x)在[1,e]上的最小值為h(1),由h(1)=1+1+b<0,
可得b<-2(滿(mǎn)足b≤0).
③當(dāng)1<1+b<e,即0<b<e-1時(shí),h(x)在(1,1+b)上單調(diào)遞減,在(1+b,e)上單調(diào)遞增,
故h(x)在[1,e]上的最小值為h(1+b)=2+b-bln(1+b).
因?yàn)?<ln(1+b)<1,所以0<bln(1+b)<b,
所以2+b-bln(1+b)>2,即h(1+b)>2,不滿(mǎn)足題意,舍去.
綜上可得b<-2或b>$\frac{{e}^{2}+2}{e-1}$,
所以實(shí)數(shù)b的取值范圍為(-∞,-2)∪($\frac{{e}^{2}+2}{e-1}$,+∞).

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類(lèi)討論思想,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知等差數(shù)列{an}的公差d≠0,首項(xiàng)a1=d,數(shù)列{an2}的前n項(xiàng)和為Sn,等比數(shù)列{bn}是公比q小于1的正弦有理數(shù)列,首項(xiàng)b1=d2,其前n項(xiàng)和為T(mén)n,若$\frac{{S}_{3}}{{T}_{3}}$是正整數(shù),則q的可能取值為( 。
A.$\frac{1}{7}$B.$\frac{3}{7}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若函數(shù)f(x)=tlnx與函數(shù)g(x)=x2-1在點(diǎn)(1,0)處有共同的切線(xiàn)l,則t的值是( 。
A.$t=\frac{1}{2}$B.t=1C.t=2D.t=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=lnx+2x-6有唯一的零點(diǎn)在區(qū)間(2,3)內(nèi),且在零點(diǎn)附近的函數(shù)值用二分法逐次計(jì)算,得到數(shù)據(jù)如表所示.那么當(dāng)精確度為0.02時(shí),方程lnx+2x-6=0的一個(gè)近似根為( 。
x2.52.531252.5468752.56252.6252.75
f(x)0.0840.0090.0290.0660.2150.512
A.2.5B.2.53C.2.54D.2.5625

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若集合A={x|x2-9x<0},B={x|1<2x<8},則集合A∩B=(0,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知集合A={x|x2-2x+3=0},B={x|ax-1=0}.
(1)若A∩B={-1},求實(shí)數(shù)a的值;
(2)若A∩B=B,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.?dāng)?shù)列{an}滿(mǎn)足${a_n}=\frac{1}{{\sqrt{n+1}+\sqrt{n}}}$,記其前n項(xiàng)和為Sn,若Sn=8,則項(xiàng)數(shù)n的值為80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{\frac{1}{2}x+1,0<x<2}\\{-2x+6,x≥2}\end{array}\right.$.
(1)求f(-2),f(1),f(3)的值;
(2)在平面直角坐標(biāo)系中畫(huà)出函數(shù)y=f(x)的圖象;
(3)根據(jù)圖象求函數(shù)y=f(x)的最大值,并指出函數(shù)y=f(x)取得最大值時(shí)自變量x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.$\frac{5-i}{1-i}$=( 。
A.3+2iB.2+2iC.2+3iD.-2-2i

查看答案和解析>>

同步練習(xí)冊(cè)答案