拋物線上一點到焦點的距離為,求該點的坐標。
,∴,∴準線的方程為,又到焦點的距離等于它到準線的距離,∴的距離為,∴它到準線的距離為,∴,代入,∴,∴。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,過拋物線y2=2PX(P>0)的焦點F的直線與拋物線相交于M、N兩點,自M、N向準線L作垂線,垂足分別為M1、N1   
 
(Ⅰ)求證:FM1⊥FN1:
(Ⅱ)記△FMM1、、△FM1N1、△FN N1的面積分別為,試判斷S22=4S1S3是否成立,并證明你的結論。   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點P在拋物線y2 = 4x上,那么點P到點Q(2,-1)的距離與點P到拋物線焦點距離之和的最小值為           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

兩點在拋物線上,的垂直平分線,(1)當且僅當取何值時,直線經過拋物線的焦點?證明你的結論;(2)當直線的斜率為時,求軸上的截距的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

圓心在拋物線上,且與軸和該拋物線的準線都相切的一個圓的方程是(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點是拋物線上一點,點到拋物線的準線的距離為,到直線的距離為,則的最小值是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線上到直線的距離最短的點的坐標是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知定點和定直線,動圓且與直線相切,求圓心的軌跡。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

根據下列條件,求出拋物線的標準方程.
(1)過點(-3,2).
(2)焦點在x軸上,且拋物線上一點A(3,m)到焦點的距離為5.

查看答案和解析>>

同步練習冊答案