4.已知直線l的極坐標方程為ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$.
(1)在極坐標系下寫出θ=0和θ=$\frac{π}{2}$時該直線上的兩點的極坐標,并畫出該直線;
(2)已知Q是曲線ρ=1上的任意一點,求點Q到直線l的最短距離及此時Q的極坐標.

分析 (1)將θ=0和θ=$\frac{π}{2}$分別代入直線l的極坐標方程,求出ρ,從而得出兩點的極坐標,畫出直線;
(2)分別求出直線l和曲線ρ=1的直角坐標方程,要求圓上任意一點到直線l的最短距離,只要求圓心O(0,0)到直線l的距離即可.

解答 解:(1)直線l經(jīng)過A(2,0),$B(2,\frac{π}{2})$兩點,
在極坐標系下,直線如圖所示:
(2)曲線ρ=1化為直角坐標方程得x2+y2=1,該曲線為單位圓,
將直線l的極坐標方程$ρsin(θ+\frac{π}{4})=\sqrt{2}$化為直角坐標方程得x+y-2=0
要求圓上任意一點到直線l的最短距離,只要求圓心O(0,0)到直線l的距離即可.
由點到直線的距離公式得:$d=\frac{|0+0-2|}{{\sqrt{2}}}=\sqrt{2}$,
所以點Q到直線l的最短距離為$\sqrt{2}-1$,
此時,點Q的極坐標為$Q(1,\frac{π}{4})$.

點評 本題考查了極坐標方程化為直角坐標方程,考查了圓上一點到直線的最短距離的求法,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.心理學家分析發(fā)現(xiàn)視覺和空間能力與性別有關,某數(shù)學興趣小組為了驗證這個結論,從興趣小組中按分層抽樣的方法取50名同學(男30女20),給所有同學幾何題和代數(shù)題各一題,讓各位同學自由選擇一道題進行解答.選題情況如表:(單位/人)
幾何題代數(shù)題總計
男同學22830
女同學81220
總計302050
(1)能事?lián)伺袛嘤?7.5%的把握認為視覺和空間能力與性別有關?
(2)現(xiàn)從選擇做幾何題的8名女生(其中包括甲、乙兩人)中任意抽取兩人對她們的答題情況進行全程研究,記甲、乙兩人被抽到的人數(shù)為X,求X的分布列及期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在△ABC中,角A,B,C所對的邊分別為a,b,c,若A,B,C成等差數(shù)列,且b=1,則△ABC面積的最大值為(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)y=$\sqrt{3}$sin2x-cos2x的圖象可由函數(shù)y=2sin2x的圖象至少向右平移$\frac{π}{12}$個單位長度得到.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知直線l的參數(shù)方程是$\left\{\begin{array}{l}x=-\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}\right.$,圓C的極坐標方程為ρ=8cosθ.
(1)求圓心C的直角坐標;
(2)若直線l與圓C相交于A,B兩點,點P的直角坐標為(0,2),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊,且滿足2acosC=2b-$\sqrt{3}$c.
(1)求A的大;
(2)現(xiàn)給出三個條件:①a=2; ②B=45°;③c=$\sqrt{3}$b.試從中選出兩個可以確定△ABC的條件,寫出你的選擇并以此為依據(jù)求△ABC的面積 (只需寫出一個選定方案即可,選多種方案以第一種方案記分).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知z=(2-i)2(i為虛數(shù)單位),則復數(shù)z的虛部為-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列函數(shù)中,定義在R上的增函數(shù)是( 。
A.$y=x-\frac{1}{x}$B.y=lg|x|C.$y=\root{3}{x}$D.$y=\sqrt{x^2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.以直角坐標系xOy的原點O為極點、x軸的正半軸為極軸建立極坐標系,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{1}{2}a+1}\\{y=\frac{\sqrt{3}}{2}a-5}\end{array}\right.$(a為參數(shù)),圓C的極坐標方程為ρ=8sinθ
(1)求圓C的圓心極坐標與半徑;
(2)判斷直線l與圓C的位置.

查看答案和解析>>

同步練習冊答案