已知斜率為2的直線l過拋物線y2=ax(a>0)的焦點F,且與y軸相交于點A,若△OAF(O為坐標原點)的面積為4,則拋物線方程為________.
y2=8x
依題意得,OF=,又直線l的斜率為2,可知AO=2OF=,△AOF的面積等于·AO·OF==4,則a2=64.又a>0,所以a=8,該拋物線的方程是y2=8x.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖已知拋物線過點,直線兩點,過點且平行于軸的直線分別與直線軸相交于點,

(1)求的值;
(2)是否存在定點,當直線過點時,△與△的面積相等?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線的焦點到雙曲線的漸近線的距離是(   )
A.
B.
C.1
D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過拋物線的焦點F作直線AB,CD與拋物線交于A、B、C、D四點,且,則的最大等于 (    )
A.-4
B.-16
C.4
D.-8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求滿足下列條件的拋物線的標準方程,并求對應拋物線的準線方程.
(1)過點(-3,2);
(2)焦點在直線x-2y-4=0上.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

拋物線y2=2px的準線方程為x=-2,該拋物線上的每個點到準線x=-2的距離都與到定點N的距離相等,圓N是以N為圓心,同時與直線l1:y=x和l2:y=-x相切的圓,
(1)求定點N的坐標;
(2)是否存在一條直線l同時滿足下列條件:
①l分別與直線l1和l2交于A、B兩點,且AB中點為E(4,1);
②l被圓N截得的弦長為2.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線,過原點的動直線交拋物線、兩點,的中點,設動點,則的最大值是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設動點P(x,y)(x≥0)到定點F的距離比到y(tǒng)軸的距離大.記點P的軌跡為曲線C.
(1)求點P的軌跡方程;
(2)設圓M過A(1,0),且圓心M在P的軌跡上,BD是圓M在y軸上截得的弦,當M運動時弦長BD是否為定值?說明理由;
(3)過F作互相垂直的兩直線交曲線C于G、H、R、S,求四邊形GRHS面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線y=x-3與拋物線y2=4x交于A,B兩點,過A,B兩點向拋物線的準線作垂線,垂足分別為P,Q,則梯形APQB的面積為(  )
A.48B.56C.64D.72

查看答案和解析>>

同步練習冊答案