分析 (1)由函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,求導(dǎo),可得±1是f′(x)=0的兩根,且f′(0)=-3,解方程組即可求得,a,b,c的值,從而求得f(x)的解析式;
(2)設(shè)切點(diǎn),求切線方程,得到2=-2x03+6x02-6,解方程可得x0,運(yùn)用點(diǎn)斜式方程,進(jìn)而得到所求切線的方程.
解答 解:(1)函數(shù)f(x)=ax3+bx2+cx的導(dǎo)數(shù)為f'(x)=3ax2+2bx+c,
依題意$\left\{\begin{array}{l}{f′(1)=3a+2b+c=0}\\{f′(-1)=3a-2b+c=0}\end{array}\right.$,
又f'(0)=-3即c=-3
∴a=1,b=0,
∴f(x)=x3-3x;
(2)設(shè)切點(diǎn)為(x0,x03-3x0),
∵f'(x)=3x2-3∴切線的斜率為f'(x0)=3x02-3,
∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0),
又切線過點(diǎn)A(2,2),
∴2-(x03-3x0)=(3x02-3)(2-x0),
∴2x03-6x02+8=0,即為2(x0+1)(x0-2)2=0,
解得x0=-1或2,
可得過點(diǎn)A(2,2)的切線斜率為0或9,
即有過點(diǎn)A(2,2)的切線方程為y-2=0或y-2=9(x-2),
即為y-2=0或9x-y-16=0.
點(diǎn)評(píng) 此題是中檔題.考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值問題,和利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線問題,體現(xiàn)了數(shù)形結(jié)合和轉(zhuǎn)化的思想,考查了學(xué)生靈活應(yīng)用知識(shí)分析解決問題的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{8}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{{e}^{2}}{4}$,$\frac{{e}^{2}}{4}$] | B. | [-$\frac{{e}^{2}}{2}$,$\frac{{e}^{2}}{2}$] | C. | [-$\frac{{e}^{2}}{3}$,$\frac{{e}^{2}}{3}$] | D. | [-e2,e2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{5π}{48}$,0) | B. | (-$\frac{7π}{48}$,0) | C. | (-$\frac{5π}{48}$,1) | D. | (-$\frac{7π}{48}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com