【題目】已知圓C的圓心在直線3x+y﹣1=0上,且圓C在x軸、y軸上截得的弦長AB和MN分別為
(1)求圓C的方程;
(2)若圓心C位于第四象限,點P(x,y)是圓C內(nèi)一動點,且x,y滿足 ,求 的范圍.

【答案】
(1)解:設圓心為(a,b),半徑為r,

則有

,

圓C:(x﹣1)2+(y+2)2=9或


(2)解:∵圓心C在第四象限,∴圓C的方程為(x﹣1)2+(y+2)2=9,

,

,

∵x,y滿足

(或 ),

又∵P在圓C內(nèi),滿足(x﹣1)2+(y+2)2<9且

∴4y2+8y﹣5<0,解得

的范圍[﹣ ,10)


【解析】(1)設出圓的圓心與半徑,根據(jù)題意列出方程組,解方程組即可求得圓的方程;(2)根據(jù)圓心的象限位置確定圓的具體方程及點A,B的具體坐標,然后用x,y表示出,再結(jié)合x,y的關系與點P在圓C內(nèi)求得其取值范圍.
【考點精析】通過靈活運用直線與圓的三種位置關系,掌握直線與圓有三種位置關系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】是定義在上的奇函數(shù),當時, .

1)求的解析式;

(2)解不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于數(shù)列,設表示數(shù)列 , , 中的最大項.數(shù)列滿足:

)若,求的前項和.

)設數(shù)列為等差數(shù)列,證明: 或者為常數(shù)),, ,

)設數(shù)列為等差數(shù)列,公差為,且

求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設Sn是數(shù)列{an}的前n項和,且a1=﹣1, =Sn , 求數(shù)列{an}的前n項和Sn= , 通項公式an=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣3ax. (Ⅰ)若函數(shù)f(x)在x=1處的切線斜率為2,求實數(shù)a;
(Ⅱ)若a=1,求函數(shù)f(x)在區(qū)間[0,3]的最值及所對應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列{an}的前n項和為S,a2+a6=20,S5=40.
(1)求{an}的通項公式;
(2)設等比數(shù)列{bn}滿足b2=a3 , b3=a7.若b6=ak , 求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={x|4x﹣1|<9,x∈R},B={x| ≥0,x∈R},則(RA)∩B=(
A.(﹣∞,﹣3)∪[ ,+∞)
B.(﹣3,﹣2]∪[0, )??
C.(﹣∞,﹣3]∪[ ,+∞)
D.(﹣3,﹣2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形是正方形, , , , 都是等邊三角形, 、、分別是線段、的中點,分別以、、、為折痕將四個等邊三角形折起,使得、、四點重合于一點,得到一個四棱錐.對于下面四個結(jié)論:

為異面直線; 直線與直線所成的角為

平面; 平面平面;

其中正確結(jié)論的個數(shù)有(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù) ,(a>0).若對任意實數(shù)x1 , 都存在正數(shù)x2 , 使得g(x2)=f(x1)成立,則實數(shù)a的取值范圍是

查看答案和解析>>

同步練習冊答案