求值:cos2α+cos2(α+120°)+cos2(α+240°)的值為
 
分析:利用誘導(dǎo)公式把cos2(α+120°)+cos2(α+240°)轉(zhuǎn)化為cos2(α-60°)+cos2(α+60°)展開后,利用同角三角函數(shù)的基本關(guān)系求得答案.
解答:解:cos2α+cos2(α+120°)+cos2(α+240°)=cos2α+cos2(α-60°)+cos2(α+60°)=cos2α+
1
2
cos2α+
3
2
sin2α=
3
2

故答案為:
3
2
點(diǎn)評(píng):本題主要考查了三角函數(shù)的化簡求值,同角三角函數(shù)的基本關(guān)系的應(yīng)用,誘導(dǎo)公式的應(yīng)用.考查了學(xué)生對(duì)三角函數(shù)基本公式 的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)A、B是單位圓O上的動(dòng)點(diǎn),且A、B分別在第一、二象限,C是圓O與x軸正半軸的交點(diǎn),△AOB 為等腰直角三角形.記∠AOC=α.
(1)若A點(diǎn)的坐標(biāo)為(
3
5
,
4
5
),求 
sin2α+sin2α
cos2α+cos2α
的值;
(2)求|BC|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A,C為銳角,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,且cos2A=
3
5
,sinC=
10
10

(1)求cos(A+C)的值;
(2)若a-c=
2
-1
,求a,b,c的值;
(3)已知tan(α+A+C)=2,求
1
2sinαcosα+cos2α
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三點(diǎn)A、B、C的坐標(biāo)分別為A(cosα,sinα)(α≠
4
,k∈Z)
,B(3,0),C(0,3),若
AB
AC
=-1
,求
1+sin2α-cos2α
1+tanα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B是單位圓O上的動(dòng)點(diǎn),且A、B分別在第一、二象限,C是圓O與x軸正半軸的交點(diǎn),△AOB為等腰直角三角形,記∠AOC=α.
(1)求A點(diǎn)的坐標(biāo)為(
3
5
4
5
),求
sin2α+sin2α
cos2α+cos2α
的值;
(2)求|BC|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•嘉定區(qū)三模)如圖,設(shè)A、B是單位圓O上的動(dòng)點(diǎn),且A、B分別在第一、二象限.C是圓O與x軸正半軸的交點(diǎn),△AOB為等邊三角形.記以O(shè)x軸正半軸為始邊,射線OA為終邊的角為θ.
(1)若點(diǎn)A的坐標(biāo)為(
3
5
,
4
5
),求
sin2θ+sin2θ
cos2θ+cos2θ
的值;
(2)設(shè)f(θ)=|BC|2,求函數(shù)f(θ)的解析式和值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案