(本小題滿分12分)如圖,在中,上的高,沿折起,使 。
(Ⅰ)證明:平面ADB  ⊥平面BDC;
(Ⅱ)設(shè)E為BC的中點(diǎn),求AE與DB夾角的余弦值。

(Ⅰ)見(jiàn)解析;(Ⅱ),>=

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
如圖,四棱錐中,底面,四邊形中, ,, ,,E為中點(diǎn).
(1)求證:CD⊥面PAC;(2)求:異面直線BE與AC所成角的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四邊形中(圖1),的中點(diǎn),,,將(圖1)沿直線折起,使二面角(如圖2)
(1)求證:平面;
(2)求二面角A—DC—B的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).
(1)求證:EF∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,F(xiàn)C⊥平面ABCD,AE⊥BD,CB=CD=CF.

(1)求證:BD⊥平面AED;(4分)
(2)求二面角F-BD-C的余弦值.(8分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
如圖,在三棱錐S-ABC中,BC⊥平面SAC,AD⊥SC.
(I)求證:AD⊥平面SBC;
(II)試在SB上找一點(diǎn)E,使得BC//平面ADE,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)如圖在底面是矩形的四棱錐P-ABCD中,PA⊥底面ABCD, E、F分別是PC、PD的中點(diǎn),求證:(1)EF∥平面PAB;
(2)平面PAD⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)如圖,四邊形ABCD是矩形,PA⊥平面ABCD,其中AB=3,PA=4,
若在線段PD上存在點(diǎn)E使得BE⊥CE,求線段AD的取值范圍,并求當(dāng)線段PD上有且只
有一個(gè)點(diǎn)E使得BE⊥CE時(shí),二面角E—BC—A正切值的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分10分)
如圖:是⊙的直徑,垂直于⊙所在的平面,是圓周上不同于的任意一點(diǎn),
(1)求證:平面.
(2)圖中有幾個(gè)直角三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案