【題目】定義在封閉的平面區(qū)域D內(nèi)任意兩點的距離的最大值稱為平面區(qū)域D直徑".已知銳角三角形的三個頂點A,B,C在半徑為1的圓上,且,分別以各邊為直徑向外作三個半圓,這三個半圓和構成平面區(qū)域D,則平面區(qū)域D直徑______.

【答案】

【解析】

由兩圓上點的距離的最大值為圓心距加上兩圓半徑可得平面區(qū)域D直徑就是三個圓的半徑之和,也即三角形周長的一半,由正弦定理得,由余弦定理結合基本不等式可得的最大值,從而可得結論.

如圖所示,設三個半圓的圓心分別為GF,E,半徑分別為,,M,PN分別為半圓上的動點,

連接PM,MG,GF,FP,設的三個內(nèi)角,的對邊分別為,,.

當且僅當M,G,F,P共線時取等號,同理可得,,因為外接圓的半徑為1,

,所以,.中,由余弦定理,可知,即,解得,當且僅當時取等號.

所以,當且僅當時取等號,故平面區(qū)域D直徑.

故答案為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】—只螞蟻在三邊長分別為,,的三角形內(nèi)自由爬行,某時刻該螞蟻距離三角形的任意一個頂點的距離不超過的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°AC=AB=AA1,EBC的中點.

(1)求證:AEB1C

(2)若GC1C中點,求二面角C-AG-E的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點處的切線經(jīng)過坐標原點,求的值;

(2)若存在極小值,使不等式恒成立,求實數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,已知橢圓的離心率為,左、右焦點分別是,以為圓心以3為半徑的圓與以為圓心以1為半徑的圓相交,且交點在橢圓.

(1)求橢圓的方程;

(2)過橢圓上一動點的直線,過F2x軸垂直的直線記為,右準線記為;

設直線與直線相交于點M,直線與直線相交于點N,證明恒為定值,并求此定值。

若連接并延長與直線相交于點Q,橢圓的右頂點A,設直線PA的斜率為,直線QA的斜率為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)存在兩個極值點,,且,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, .

討論的單調(diào)性;

,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】濱海市政府今年加大了招商引資的力度,吸引外資的數(shù)量明顯增加.一外商計劃在濱海市投資兩個項目,總投資20億元,其中甲項目的10年收益額(單位:億元)與投資額(單位:億元)滿足,乙項目的10年收益額(單位:億元)與投資額(單位:億元)滿足,并且每個項目至少要投資2億元.設兩個項目的10年收益額之和為.

(1)求;

(2)如何安排甲、乙兩個項目的投資額,才能使這兩個項目的10年收益額之和最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線的焦點為,準線為,是拋物線上的兩個動點,且滿足.設線段的中點上的投影為,則的最大值是_______.

查看答案和解析>>

同步練習冊答案