分析 (1)先求出基本事件總數(shù)n=43=64,再求出僅有兩人所選項目相同包含的基本事件個數(shù)m=C${\;}_{3}^{2}$${A}_{4}^{2}$=36,由此能求出僅有兩人所選項目相同的概率.
(2)由題意X的可能取值為0,1,2,3,分別求出相應的概率,由此能求出X的分布列和數(shù)學期望.
解答 解:(1)甲、乙、丙三位同學每人均從跳遠,跳高,鉛球,標槍四個項目中隨機選一項參加比賽,
假設三人選項目時互不影響,且每人選每一個項目時都是等可能的,
基本事件總數(shù)n=43=64,
僅有兩人所選項目相同包含的基本事件個數(shù)m=C${\;}_{3}^{2}$${A}_{4}^{2}$=36,
∴僅有兩人所選項目相同的概率p=$\frac{m}{n}=\frac{36}{64}$=$\frac{9}{16}$.
(2)由題意X的可能取值為0,1,2,3,
P(X=0)=$\frac{{3}^{3}}{{4}^{3}}$=$\frac{27}{64}$,
P(X=1)=$\frac{{C}_{3}^{1}×3×3}{{4}^{3}}$=$\frac{27}{64}$,
P(X=2)=$\frac{{C}_{3}^{2}×3}{{4}^{3}}$=$\frac{9}{64}$,
P(X=3)=$\frac{{C}_{3}^{3}}{{4}^{3}}$=$\frac{1}{64}$,
∴X的分布列為:
X | 0 | 1 | 2 | 3 |
P | $\frac{27}{64}$ | $\frac{27}{64}$ | $\frac{9}{64}$ | $\frac{1}{64}$ |
點評 本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{4}{5}$ | B. | $\frac{4}{3}$ | C. | -$\frac{3}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com