已知定義在R上的函數(shù)f(x)滿足:f(x)=
x2+2,x∈[0,1)
2-x2,x∈[-1,0)
且f(x+2)=f(x),g(x)=
2x+5
x+2
,則方程f(x)=g(x)在區(qū)間[-5,1]上的所有實根之和為
 
考點:分段函數(shù)的應用
專題:計算題,數(shù)形結合,函數(shù)的性質及應用
分析:化簡g(x)的表達式,得到g(x)的圖象關于點(-2,1)對稱,由f(x)的周期性,畫出f(x),g(x)的圖象,通過圖象觀察[-5,1]上的交點的橫坐標的特點,求出它們的和.
解答: 解:由題意知g(x)=
2x+5
x+2
=
2(x+2)+1
x+2
=2+
1
x+2
,函數(shù)f(x)的周期為2,則函數(shù)f(x),g(x)在區(qū)間[-5,1]上的圖象如下圖所示:
由圖形可知函數(shù)f(x),g(x)在區(qū)間[-5,1]上的交點為A,B,C,易知點B的橫坐標為-3,若設C的橫坐標為t(0<t<1),則點A的橫坐標為-4-t,所以方程f(x)=g(x)在區(qū)間[-5,1]上的所有實數(shù)根之和為-3+(-4-t)+t=-7.
故答案為:-7.
點評:本題考查分段函數(shù)的圖象和運用,考查函數(shù)的周期性、對稱性和應用,同時考查數(shù)形結合的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是首項a1=4,公比q≠1的等比數(shù)列,Sn是其前n項和,且4a1,a5,-2a3成等差數(shù)列.
(1)求公比q的值;
(2)求Tn=a2+a4+…+a2n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E、F分別是BB1、CD的中點.
(1)求證:D1F⊥平面ADE;
(2)若AB=1,求三棱錐D1-DEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
sinx, 當sinx≥cosx
cosx, 當sinx<cosx
,現(xiàn)有下列四個命題:
p1:函數(shù)f(x)的值域是[-1,1];
p2:當且僅當2kπ+π<x<2kπ+
2
(k∈Z)時,f(x)<0;
p3:當且僅當x=2kπ+
π
2
(k∈Z)時,該函數(shù)取得最大值1;
p4:函數(shù)f(x)是以2π為最小正周期的周期函數(shù).
其中為真命題的是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,一矩形鐵皮的長為8cm,寬為5cm,在四個角上截去四個相同的小正方形,制成一個無蓋的小盒子,則小正方形的邊長為
 
時,盒子容積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC三個頂點所表示的復數(shù)分別是1+3i,3+2i,4+4i,則△ABC的面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知ex>xm對任意x∈(1,+∞)恒成立,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設Rt△ABC的三邊長AB=5,BC=4,CA=3,則向量
BC
在向量
AB
上的投影等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P、Q是兩個非空集合,定義P*Q={(a,b)|a∈P,b∈Q}.若P={0,1,2},Q={1,2,3,4},則P*Q中的元素個數(shù)有
 
個.

查看答案和解析>>

同步練習冊答案