13.已知某幾何體的三視圖如圖所示,根據(jù)圖中的數(shù)據(jù)可得此幾何體的體積為( 。
A.$\frac{1}{6}$B.$\frac{17}{6}$C.$\frac{8}{3}$D.3

分析 由三視圖知該幾何體是一個(gè)長方體截去一個(gè)三棱錐所得的組合體,由三視圖求出幾何元素的長度,由柱體、錐體的體積公式求出幾何體的體積.

解答 解:由三視圖知幾何體是一個(gè)長方體截去一個(gè)三棱錐所得的組合體,
且長方體長、寬、高分別是1、1、3,
三棱錐的底面是等腰直角三角形、直角邊是1,三棱錐的高是1,
∴該幾何體的體積V=$1×1×3-\frac{1}{3}×\frac{1}{2}×1×1×1$=$\frac{17}{6}$,
故選:B.

點(diǎn)評(píng) 本題考查三視圖求幾何體的體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.△ABC的三個(gè)頂點(diǎn)分別是A(-4,0),B(0,-3),C(-2,1).
(1)求BC邊所在的直線的方程;
(2)求BC邊上的高所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的是( 。
A.y=2xB.y=$\frac{1}{{x}^{2}}$C.y=ln|x|D.y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)y=sin(2x-$\frac{π}{3}$)的一條對(duì)稱軸是( 。
A.x=$\frac{π}{6}$B.x=$\frac{5π}{12}$C.x=$\frac{π}{3}$D.x=$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.直線y=x-2與曲線y2=x所圍成的封閉圖形的面積為(  )
A.$\frac{1}{6}$B.$\frac{9}{2}$C.$\frac{8}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知復(fù)數(shù)z滿足(1+2i)$\overline{z}$=4+3i.
(1)求復(fù)數(shù)z;
(2)若復(fù)數(shù)(z+ai)2在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在正方體ABCD-A1B1C1D1中,已知E、F、G分別是棱AB、AD、D1A1的中點(diǎn).
(1)求證:BG∥平面A1EF:
(2)若P為棱CC1上一點(diǎn),求當(dāng)$\frac{CP}{P{C}_{1}}$等于多少時(shí),平面A1EF⊥平面EFP?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若不等式ex<|a|+|a-1|對(duì)任意a∈R恒成立,則實(shí)數(shù)x的取值范圍為( 。
A.(-∞,0)B.(-∞,10)C.(0,1)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知0<α<π,則tanα>1是sinα>cosα的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案