【題目】設(shè)數(shù)列)的各項均為正整數(shù),且.若對任意,存在正整數(shù)使得,則稱數(shù)列具有性質(zhì).

1)判斷數(shù)列與數(shù)列是否具有性質(zhì);(只需寫出結(jié)論)

2)若數(shù)列具有性質(zhì),且,,,求的最小值;

3)若集合,且(任意,.求證:存在,使得從中可以選取若干元素(可重復(fù)選取)組成一個具有性質(zhì)的數(shù)列.

【答案】1)數(shù)列不具有性質(zhì);數(shù)列具有性質(zhì)2的最小值為3)證明見解析

【解析】

1不滿足存在正整數(shù)使得,故數(shù)列不具有性質(zhì);根據(jù)定義可知數(shù)列具有性質(zhì)

2)由題可知,,,,,所以再驗證可知時,數(shù)列不具有性質(zhì),時,數(shù)列具有性質(zhì),從而可知的最小值為;

3)反證法:假設(shè)結(jié)論不成立,即對任意都有:若正整數(shù),則,再根據(jù)定義推出矛盾,從而可證結(jié)論正確.

1)數(shù)列不具有性質(zhì);數(shù)列具有性質(zhì).

2)由題可知,,,,

所以.

,因為,所以.

同理,

因為數(shù)列各項均為正整數(shù),所以.所以數(shù)列前三項為.

因為數(shù)列具有性質(zhì)只可能為之一,而又因為,

所以.

同理,有.

此時數(shù)列為.

但數(shù)列中不存在使得,所以該數(shù)列不具有性質(zhì).

所以.

當(dāng)時,取.(構(gòu)造數(shù)列不唯一)

經(jīng)驗證,此數(shù)列具有性質(zhì).

所以,的最小值為.

3)反證法:假設(shè)結(jié)論不成立,即對任意都有:若正整數(shù),則.

否則,存在滿足:存在,使得,此時,從中取出

當(dāng)時,是一個具有性質(zhì)的數(shù)列;

當(dāng)時,是一個具有性質(zhì)的數(shù)列;

當(dāng)時,是一個具有性質(zhì)的數(shù)列.

i)由題意可知,這個集合中至少有一個集合的元素個數(shù)不少于個,

不妨設(shè)此集合為,從中取出個數(shù),記為,且.

令集合.

由假設(shè),對任意,所以.

ii)在中至少有一個集合包含中的至少個元素,不妨設(shè)這個集合為,

中取出個數(shù),記為,且.

令集合.

由假設(shè).對任意,存在使得.

所以對任意,,

由假設(shè),所以,所以,所以.

iii)在中至少有一個集合包含中的至少個元素,不妨設(shè)這個集合為,

中取出個數(shù),記為,且.

令集合.

由假設(shè).對任意,存在使得.

所以對任意,,

同樣,由假設(shè)可得,所以,所以.

iv)類似地,在中至少有一個集合包含中的至少個元素,不妨設(shè)這個集合為

中取出個數(shù),記為,且,

.

v)同樣,在中至少有一個集合包含中的至少個元素,不妨設(shè)這個集合為,

中取出個數(shù),記為,且,同理可得.

vi)由假設(shè)可得.

同上可知,,

而又因為,所以,矛盾.所以假設(shè)不成立.

所以原命題得證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 t為參數(shù)),若以O為極點,x軸的正半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

1)求曲線C的直角坐標(biāo)方程及直線l的普通方程;

2)將所得曲線C向右平移1個單位長度,再將曲線C上的所有點的橫坐標(biāo)變?yōu)樵瓉淼?/span>2倍,得到曲線,求曲線上的點到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的普通方程為:,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,正方形的頂點都在上,且逆時針依次排列,點的極坐標(biāo)為

1)寫出曲線的參數(shù)方程,及點的直角坐標(biāo);

2)設(shè)為橢圓上的任意一點,求:的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)點是拋物線的焦點,直線與拋物線相切于點(點位于第一象限),并與拋物線的準(zhǔn)線相交于點.過點且與直線垂直的直線交拋物線于另一點,交軸于點,連結(jié)

1)證明:為等腰三角形;

2)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)中有許多寓意美好的曲線,曲線被稱為四葉玫瑰線(如圖所示).

給出下列三個結(jié)論:

①曲線關(guān)于直線對稱;

②曲線上任意一點到原點的距離都不超過;

③存在一個以原點為中心、邊長為的正方形,使得曲線在此正方形區(qū)域內(nèi)(含邊界).

其中,正確結(jié)論的序號是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中正確的個數(shù)是(

①在中,“”是“”的必要不充分條件;

②若,的最小值為2;

③夾在圓柱的兩個平行截面間的幾何體是圓柱;

④數(shù)列的通項公式為,則數(shù)列的前項和.(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了實施“科技下鄉(xiāng),精準(zhǔn)脫貧”戰(zhàn)略,某縣科技特派員帶著三個農(nóng)業(yè)扶貧項目進駐某村,對僅有的四個貧困戶進行產(chǎn)業(yè)幫扶.經(jīng)過前期走訪得知,這四個貧困戶甲、乙、丙、丁選擇三個項目的意向如下:

扶貧項目

貧困戶

甲、乙、丙、丁

甲、乙、丙

丙、丁

若每個貧困戶只能從自己已登記的選擇意向中隨機選取一項,且每個項目至多有兩個貧困戶選擇,則甲乙兩戶選擇同一個扶貧項目的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近期,西安公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,表示活動推出的天數(shù),表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表下所示:

根據(jù)以上數(shù)據(jù),繪制了散點圖.

1)根據(jù)散點圖判斷,在推廣期內(nèi),均為大于零的常數(shù)),哪一個適宜作為掃碼支付的人次關(guān)于活動推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);

2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),建立的回歸方程,并預(yù)測活動推出第8天使用掃碼支付的人次;

3)推廣期結(jié)束后,車隊對乘客的支付方式進行統(tǒng)計,結(jié)果如下表:

西安公交六公司車隊為緩解周邊居民出行壓力,以萬元的單價購進了一批新車,根據(jù)以往的經(jīng)驗可知,每輛車每個月的運營成本約為萬元.已知該線路公交車票價為元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受折優(yōu)惠,掃碼支付的乘客隨機優(yōu)惠,根據(jù)統(tǒng)計結(jié)果得知,使用掃碼支付的乘客中有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠.預(yù)計該車隊每輛車每個月有萬人次乘車,根據(jù)所給數(shù)據(jù)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,在不考慮其它因素的條件下,按照上述收費標(biāo)準(zhǔn),假設(shè)這批車需要)年才能開始盈利,求的值.

參考數(shù)據(jù):

其中其中,

參考公式:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若,解不等式;

(Ⅱ)若不等式至少有一個負數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案