1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{5-x},x≤0}\\{lo{g}_{4}x,x>0}\end{array}\right.$,則f[f(-3)]=-$\frac{3}{2}$.

分析 由已知得f(-3)=$\frac{1}{5-(-3)}$=$\frac{1}{8}$,從而f[f(-3)]=f($\frac{1}{8}$),由此能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{5-x},x≤0}\\{lo{g}_{4}x,x>0}\end{array}\right.$,
∴f(-3)=$\frac{1}{5-(-3)}$=$\frac{1}{8}$,
f[f(-3)]=f($\frac{1}{8}$)=$lo{{g}_{4}\frac{1}{8}}^{\;}$=$\frac{lg\frac{1}{8}}{lg4}$=$\frac{-3lg2}{2lg2}$=-$\frac{3}{2}$.
故答案為:$-\frac{3}{2}$.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,三棱錐A-BCD中,AB⊥平面BCD,AC=AD=2,BC=BD=1,點(diǎn)E是線段AD的中點(diǎn).
(1)如果CD=$\sqrt{2}$,求證:平面BCE⊥平面ABD;
(2)如果∠CBD=$\frac{2π}{3}$,求二面角A-BE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在△ABC中,tanC=2,BC邊上的高為AD,D為垂足,且BD=2DC,則cosA=( 。
A.$\frac{3}{10}$B.$\frac{\sqrt{10}}{10}$C.$\frac{\sqrt{5}}{5}$D.$\frac{3\sqrt{10}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知集合A={0,1,2},B={1,m},若A∩B=B,則實(shí)數(shù)m的取值集合是(  )
A.{0}B.{2}C.{0,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知命題p與命題q,若命題:(¬p)∨q為假命題則下列說(shuō)法正確是( 。
A.p真,q真B.p假,q真C.p真,q假D.p假,q假

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖是f(x)=$\frac{{2\sqrt{3}}}{3}$cos(ωx+φ)(ω>0)的部分圖象,下列說(shuō)法錯(cuò)誤的是( 。
A.函數(shù)f(x)的最小正周期是$\frac{12}{5}$
B.函數(shù)g(x)=$\frac{{2\sqrt{3}}}{3}sin\frac{5π}{6}$x的圖象可由函數(shù)f(x)的圖象向右平移$\frac{2}{5}$個(gè)單位得到
C.函數(shù)f(x)圖象的一個(gè)對(duì)稱(chēng)中心是(-$\frac{4}{5}$,0)
D.函數(shù)f(x)的一個(gè)遞減區(qū)間是(5,$\frac{31}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,四棱錐S-ABCD中,底面ABCD為直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB,M,N分別為SA,SB的中點(diǎn),E為CD中點(diǎn),過(guò)M,N作平面MNPQ分別與BC,AD交于點(diǎn)P,Q,若$\overrightarrow{DQ}$=t$\overrightarrow{DA}$.
(1)當(dāng)t=$\frac{1}{2}$時(shí),求證:平面SAE⊥平面MNPQ;
(2)是否存在實(shí)數(shù)t,使得二面角M-PQ-A的平面角的余弦值為$\frac{\sqrt{5}}{5}$?若存在,求出實(shí)數(shù)t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知向量$\overrightarrow{AB}$、$\overrightarrow{AC}$、$\overrightarrow{AD}$滿足$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{AD}$,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AD}$|=1,E、F分別是線段BC、CD的中點(diǎn),若$\overrightarrow{DE}$•$\overrightarrow{BF}$=-$\frac{5}{4}$,則向量$\overrightarrow{AB}$與$\overrightarrow{AD}$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.過(guò)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)F(-c,0)(c>0),作傾斜角為$\frac{π}{6}$的直線FE交該雙曲線右支于點(diǎn)P,若$\overrightarrow{OE}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OP}$),且$\overrightarrow{OE}$•$\overrightarrow{EF}$=0,則雙曲線的離心率為( 。
A.$\frac{\sqrt{10}}{5}$B.$\sqrt{3}$+1C.$\frac{\sqrt{10}}{2}$D.$\sqrt{5}$+1

查看答案和解析>>

同步練習(xí)冊(cè)答案